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Abstract

We embed a lockdown choice in a simplified epidemiological model and derive
formulas for the optimal lockdown intensity and duration. The optimal policy re-
flects the rate of time preference, epidemiological factors, the hazard rate of vaccine
discovery, learning effects in the health care sector, and the severity of output losses
due to a lockdown. In our baseline specification a Covid-19 shock as currently expe-
rienced by the US optimally triggers a reduction in economic activity by two thirds,
for about 50 days, or approximately 9.5 percent of annual GDP.

JEL codes: I18

Keywords: Epidemic, pandemic, lockdown, social distancing, production shortfall,
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1 Introduction

To “flatten the curve” of severe respiratory tract infections caused by Covid-19, policy
makers around the world have imposed strict social distancing measures and partial lock-
downs. In that context, a first-order policy question is how strict such measures should
be and for how long they should be imposed. In this note, we propose two simple mod-
els based on the classical epidemiological framework with an embedded policy choice to
address this question.

Our analysis starts from a framework with “susceptible,” “infected,” and “removed”
(deceased or fully recovered) persons in the tradition of the classical article by Kermack
and McKendrick (1927). In that framework transitions between the subgroups with dif-
ferent health status are governed by epidemiological parameters. We augment this frame-
work by allowing for a policy choice—reflecting the level of economic activity—to affect
infection rates. Higher activity increases production but also raises the rate of infections,
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causing future production shortfalls due to death as well as an overburdening of the health
care system. Since current and future production shortfalls and health care costs enter
society’s loss function the government’s program is a dynamic one: to select the optimal
path for activity (or social distancing or lockdowns).

This dynamic program cannot be solved in closed form. In parallel, ongoing work
Alvarez et al. (2020) therefore numerically solve for the optimal policy path. We pursue a
complementary approach: We simplify the epidemiological framework slightly and build
two nested, much more tractable models. One of them can be solved in closed form
and the other can “nearly” be solved in closed form. Together, the two models offer
transparent and easy-to-compute answers to the policy question at hand. We believe that
this is valuable, in particular when information about an infectious disease—like Covid-19
now—is sparse and the task is to gain a first, basic understanding of the tradeoffs at work.

We allow the government’s program to reflect several factors that prominently feature
in policy discussions. For example, one of our models features convex costs of flows from
the susceptible to the infected population, introducing a role for policies that flatten the
curve. Similarly, our other model includes learning effects in the health care sector which
introduce a role for delaying such flows. The learning effects reflect the fact that except
for a few countries mostly in the Far East (that had experienced similar outbreaks in
the past), governments and public health agencies across the globe were left scrambling
after the surge in Covid-19 infections; over time, we should expect experience and more
adequate supplies of equipment to relax some of the current bottlenecks.

When we calibrate the models using information about the projected death toll, health
care stress, and output losses in the US due to the current Covid-19 shock we find that
the optimal lockdown is quite severe and prolonged: Activity is optimally reduced by two
thirds, for roughly 50 days. We conduct a series of robustness checks and find that all
resulting model predictions are in the same ballbark.

As mentioned before our work is closely related to ongoing work by Alvarez et al.
(2020). Other recent contributions that merge basic epidemiology and economics include
Atkeson (2020), Eichenbaum et al. (2020), and Stock (2020). For discussions of the
broader policy options, see for example Baldwin and Weder di Mauro (2020a; 2020b).

2 The Model

Our analysis is based on the canonical epidemiological model (the SIR model) due to
Kermack and McKendrick (1927). We simplify that framework to improve tractability
and imbed policy decisions that capture the severity and duration of a “lockdown.” In
this section we review the SIR model and introduce policy objective and instrument.

2.1 SIR Model

The SIR model specifies laws of motion in continuous time for the population shares of
three groups that differ with respect to health status. The three groups are the “sus-
ceptible,” the “infected,” and the “removed,” and their respective population shares at

2



time t ≥ 0 are denoted by x(t), y(t), and z(t), where x(t) + y(t) + z(t) = 1. We normal-
ize the population size to unity. Accordingly, the population shares x(t), y(t), and z(t)
correspond to the “number” of susceptible, infected, and removed persons.

At time t = 0 the population consists of x(0) susceptible persons and a few infected
persons, y(0). There are no removed persons at this time, z(0) = 0. In each instant after
time t = 0, the infected transmit their infection to the susceptible and a fraction of the
infected either dies or develops resistance. Formally, following Bohner et al. (2019), the
change of the number of susceptible, infected, and removed persons, respectively, satisfies

ẋ(t) = −b(t)x(t)
y(t)

x(t) + y(t)
, (1)

ẏ(t) = −ẋ(t)− (cd + cr)y(t), (2)

ż(t) = (cd + cr)y(t). (3)

Here, b(t) denotes a possibly time-varying infection rate. As in Bohner et al. (2019) it
reflects epidemiological factors which we take as exogenously given. Unlike Bohner et al.
(2019) we allow b(t) to also reflect government policy (see below). The extent to which
susceptible persons are infected depends on their number, x(t); the infection rate, b(t);
and the share of the infected in the susceptible or infected population.

The number of infected persons increases one-to-one with each susceptible that gets
infected. At the same time, a share c ≡ cd+ cr of the infected population dies or recovers;
the coefficients cd and cr parameterize the flow into death and recovery, respectively.

The system (1)–(3) can be solved (see appendix A) for

x(t) = x(0)e

∫
t

0
−κb(u)

κ+e

∫
u
0 (c−b(s))ds

du
, (4)

y(t) = y(0)e

∫
t

0
b(u)

1+κe

∫
u
0 (b(s)−c)ds

−c du
, (5)

z(t) = 1− x(t)
(

1 + κe
∫
t

0 (b(s)−c)ds
)

s.t. (4), (6)

where κ ≡ y(0)/x(0).
Figure 1 illustrates the dynamics when we let b(t) = β, the fundamental infection

rate absent any policy intervention.1 We measure time in days and let β = 0.2, cr =
(0.05)(0.99), and cd = (0.05)(0.01).2

2.2 Policy Objective and Instrument

The basic tradeoff we are interested in is the conflict between fostering economic activity
and slowing down the spread of infections. Almost all countries that have responded to

1Equation (2) implies that at the beginning of an epidemic when x(t) ≈ 1 and z(t) ≈ 0, rate β equals
the growth rate of the number of persons who are or were infected:

ẏ(t) + ż(t)

y(t) + z(t)
= βy(t)

x(t)

x(t) + y(t)

1

y(t) + z(t)
≈ β.

2We take the value for β from Alvarez et al. (2020) and assume that 5 percent of the infected are
removed, of which 1 percent dies.
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Figure 1: Dynamics in the SIR model: x(t) (solid), y(t) (dashed), and z(t) (recovered and
deceased, dotted).

the spread of Covid-19 by imposing severe restrictions on mobility and economic activity
have motivated these restrictions with the aim to delay infections or to “flatten the curve,”
i.e., to reduce the speed at which infections occur. The main argument for delay is to
gain time in which health care providers can prepare for the higher case load. The main
argument for flattening the curve is to limit the stress that Covid-19 infections impose on
the health care system—specifically on intensive care units—because this stress increases
fatality rates. In the SIR model outlined above, both measures to delay and to flattening
the curve correspond to policy interventions that push b(t) below β.

Let a(t) ∈ A denote a measure of economic activity inversely related to lockdown
policies such as social distancing, forced shutdowns of businesses, etc. The maximum
element of A is unity, representing the regular level of activity. The minimum element
of A (which is nonnegative) represents the lower bound on activity or upper bound on
lockdown policies. This minimum could be strictly positive, reflecting the fact that even
during an extreme lockdown elementary goods and services need to be produced (e.g.,
in the food, energy, or health care sector) or that political constraints prevent extreme
containment policies.

Activity a(t) increases the spread of infections, which imposes a burden on the health
care system, and it raises output. We assume that the infection rate satisfies

b(t) = βf(a(t))

for some smooth increasing function f . Moreover, we assume that output is a smooth
increasing function g of activity which may also depend on the population shares,

output(t) = g(a(t), x(t), y(t), z(t)),
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and satisfies g(1, 1, 0, 0) = 1 (i.e., we normalize output in “normal” times to unity).
Finally, we assume that the burden that new infections impose on the health care system
is a smooth increasing function h of ẏ(t),

burden(t) = h(ẏ(t), t).

Let ρ denote the rate of time preference and ν the hazard rate with which a new
vaccine is discovered. The policy problem then reads

max
(a(t))∞

t=0

∫

∞

0

e−(ρ+ν)t {g(a(t), x(t), y(t), z(t))− h(ẏ(t), t) + νV (1, x(t), y(t), z(t))} dt

s.t. (1), (2), (3), b(t) = βf(a(t)), a(t) ∈ A, x(0) given.

The last term in the integral reflects the probability weighted value, V , of exiting the
lockdown due to the discovery of a vaccine.

We are interested in analytical characterizations of optimal paths for a(t) and the
implied paths for x(t), y(t), and z(t). The system (1)–(3) or (4)–(6) is not suitable for
such characterizations. When we leave a(t) unrestricted (subject to a(t) ∈ A) and form the
Hamiltonian that reflects (1)–(3) and the policy objective then the Hamiltonian does not
yield closed-form solutions even if we assume tractable functional forms for f , g, and h.3

Similarly, restricting a(t) to belong to a class of functions that is parameterized by a few
parameters and maximizing the intertemporal objective subject to the constraints (4)–(6)
very quickly becomes analytically intractable as well.

Against this background, we simplify the epidemiological framework in order to express
health dynamics in terms of a single rather than two state variables.4 In the next section,
we lay out these simplifications and solve the policy problem.

3 Analysis

We analyze two specialized models which are nested by the general model introduced
above. We assume, realistically for most countries, that available tests for infection and
immunity are scarce, limiting the government’s options to indiscriminate lockdowns of
varying intensity and duration.

3.1 Model 1

To obtain the first model we simplify along two dimensions. First, we neglect deaths and
let cd = 0.5 Importantly, this does not mean that we disregard the burden that infections
impose on the health care system, to the contrary. This burden depends on the outflow
from susceptibles, not on the number of deceased.

3See Alvarez et al. (2020) for a numerical approach to solving a related problem.
4The SIR model features two state variables, x(t) and y(t). The third variable, z(t), is implied by the

former two.
5Recall from figure 1 that the population share of deceased is small even in the absence of any policy

intervention.
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Second, we blur the distinction between infected and recovered. While we maintain the
feature of the SIR model that infection rates reflect the interaction between susceptible
and infected persons we assume that infected persons are as productive as healthy ones.
Formally, we let cr = 0 such that infection is an absorbing state and z(t) = 0, and
we assume that production does not depend on the population shares x(t) and y(t).
Stated differently, we view x(t) as the population share of the “not yet infected” and
y(t) = 1− x(t) as the share of the “infected but still productive.” Since members of the
two groups are equally productive the function g does not depend on population shares
and V satisfies

V (1, x(t), y(t), z(t)) =

∫

∞

j=0

e−ρjg(1, 1, 0, 0) dj = g(1, 1, 0, 0)/ρ = ρ−1.

Regarding functional forms, we let f(a(t)) = a(t), output(t) = a(t), and h(ẏ(t), t) =
h1e

−λtẏ(t).6 That is, we let activity have a proportional effect on the infection rate and
on output and we assume that stress in the health care system is proportional to ẏ(t) and
a factor h1e

−λt. The parameter λ represents the speed of learning or efficiency enhancing
measures in the health care sector. A strictly positive λ generates a motive to delay
infections until society is better equipped to confront the stress imposed on the health
care sector.7 Finally, we let A = [ā, 1] with ā > 0. Accordingly, the government’s program
reads

max
(a(t))∞

t=0

∫

∞

0

e−(ρ+ν)t
{

a(t)− h1e
−λtẏ(t) + ν/ρ

}

dt

s.t. ẏ(t) = a(t)βy(t)(1− y(t)), a(t) ∈ [ā, 1], y(0) given.

When we abstract from policy model 1 is identical to the SIR model except that
c = 0; that is, the time paths of x(t) and y(t) follow logistic curves. Figure 2 illustrates
the dynamics when a(t) = 1 and when we reduce β by a factor of 0.8 relative to the value
underlying figure 1 in order to better match the dynamics of x(t) in the SIR model.

Note that the time paths of the shares of “infected” and “not yet infected” are very
similar in the two models.

Optimal Policy To characterize the optimal policy we form the current value Hamil-
tonian

Hc(t) = a(t)− h1e
−λta(t)βy(t)(1− y(t)) +

ν

ρ
+ µ(t)a(t)βy(t)(1− y(t)),

where µ(t) denotes the co-state variable associated with the state variable y(t). The
derivative of Hc(t) with respect to the control variable a(t) yields

dHc(t)

da(t)
= 1− βy(t)(1− y(t))(h1e

−λt − µ(t)). (7)

6Unlike Alvarez et al. (2020) we assume that the effect of activity on the infection rate is linear rather
than quadratic. Recall from equation (1) that the infection rate ẋ(t) depends on x(t) as well as the
number of infected relative to the number of infected or susceptible. The latter ratio does not change
with a lockdown.

7In model 2, we explicitly model the motivation to flatten the curve in order to smooth convex stress
in the health care system over time.
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Figure 2: Dynamics in model 1 absent policy intervention: x(t) (solid), ẏ(t) (scaled,
dashed), and y(t) = (1− x(t)) (dotted).

Since this derivative does not depend on a(t) the control variable typically is in a corner:
either a(t) = ā or a(t) = 1.

The law of motion for the co-state variable is given by

µ̇(t) = −
dHc(t)

dy(t)
+ (ρ+ ν)µ(t) = a(t)β(1− 2y(t))(h1e

−λt − µ(t)) + (ρ+ ν)µ(t).

Finally, the time derivative of the effect of the control variable on the Hamiltonian equals

˙(

dHc(t)

da(t)

)

= −β(1− 2y(t))(h1e
−λt − µ(t))a(t)βy(t)(1− y(t))

+ βy(t)(1− y(t))
[

a(t)β(1− 2y(t))(h1e
−λt − µ(t)) + (ρ+ ν)µ(t) + λe−λt

]

,

= βy(t)(1− y(t))
[

(ρ+ ν)µ(t) + λe−λt
]

. (8)

Note that µ(t) is the shadow value of the population share of the infected, y(t). An
increase in this share has no direct effect on output but reduces the future burden on the
health care system since ẏ(t) is strictly positive until everybody is infected.8 Accordingly,
µ(t) > 0. Combining this result with equation (8) implies that the effect of a(t) on the
Hamiltonian is monotonically increasing over time.

We conclude that there are two cases to distinguish: Either dHc(0)/(da(0)) > 0
and the optimal policy does not involve a lockdown. For given y(0) this condition is
satisfied when h1, which parameterizes the burden that infections impose on the health
care system, is low. Or, if dHc(0)/(da(0)) < 0 (which is the case for sufficiently high

8Recall that ā > 0.
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h1) the optimal policy immediately imposes a lockdown. Such a lockdown cannot be
permanent however and in fact, it ends before all persons have been infected. For as long
as µ(t) is bounded the effect of the control on the Hamiltonian sooner or later becomes
positive since limt→∞ y(t) = 1 and therefore limt→∞ dHc(t)/da(t) = 1 > 0.9

3.2 Model 2

To obtain the second model we simplify along different dimensions. First, we neglect
recovery (cr = 0) and assume a strictly positive death rate (cd > 0) such that everyone
who transits from susceptible to infected eventually dies. Second, we blur the distinction
between susceptible and infected assuming that the two groups are equally productive and
that only their total share, x(t) + y(t) = 1− z(t), is relevant for the economy’s dynamics.
That is, we assume that x(t) and y(t) can be characterized by a single state variable.

Given the laws of motions (1) and (2) this requires that the relative share x(t)/(x(t)+
y(t)) remains constant over time. Since y(0)/x(0) = κ this implies y(t)/(x(t) + y(t)) =
κ(1+ κ)−1 and consistency with the laws of motion then entails cd = β, which we assume
to hold.10 Absent policy, the system (1)–(3) therefore simplifies to

( ˙1− z(t)) = −β̃(1− z(t)) (= −βy(t)),

ż(t) = β̃(1− z(t)) (= βy(t)),

where β̃ ≡ βκ/(1 + κ) denotes the fatality rate. Constancy of the fatality rate is an
unreasonable feature over longer periods, due to the eventual slowdown of infections; we
therefore view model 2 as a useful approximation only for the short run.

Since susceptible and infected persons are equally productive and the deceased do not
contribute to production we have

V (1, x(t), y(t), z(t)) =

∫

∞

j=0

e−ρjg(1, 1− z(t), 0, z(t)) dj = (1− z(t))ρ−1,

where we assume that productivity returns to normal levels once the vaccine is discovered.
Regarding the (other) functional forms, we let f(a(t)) = a(t), output(t) = a(t)(1− z(t)),
and

h(ẏ(t)) =
h2

2
(ẏ(t))2

(

1 + κ

κ

)2

=
h2

2

(

˙(1− z(t))
κ

1 + κ

)2(
1 + κ

κ

)2

=
h2

2
(ż(t))2 .

That is, we let activity have a proportional effect on the infection rate and on per-
capita output and we assume that the stress in the health care system is quadratic,

9This requires that ā > 0 as we assumed. If a(t) fell to zero the economy would shut down and
infections would no longer spread.

10When we introduce the policy choice a(t) we disregard the fact that this would in principle also affect
the condition cd = β and thereby modify the laws of motion.
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with coefficient h2/2.
11 Finally, we let A = [ā, 1]. The government’s program thus reads

max
(a(t))∞

t=0

∫

∞

0

e−(ρ+ν)t

{

a(t)(1− z(t))−
h2

2
(ż(t))2 +

ν

ρ
(1− z(t))

}

dt

s.t. ż(t) = a(t)β̃(1− z(t)), a(t) ∈ [ā, 1], z(0) given.

Optimal Policy The current value Hamiltonian now reads

Hc(t) = a(t)(1− z(t))−
h2

2
a(t)2β̃2(1− z(t))2 +

ν

ρ
(1− z(t)) + µ(t)a(t)β̃(1− z(t))

and its derivative with respect to the control variable a(t) is given by

dHc(t)

da(t)
= (1− z(t))(1 + β̃µ(t))− h2a(t)β̃

2(1− z(t))2.

We conjecture that a(t) is interior and thus satisfies

a(t) =
1 + β̃µ(t)

h2β̃2(1− z(t))
. (9)

The product a(t)(1− z(t)) then does not directly depend on z(t) and the same holds true
for all terms in the Hamiltonian except the third one.

The law of motion for the co-state variable is given by

˙µ(t) = −
dHc(t)

dz(t)
+ (ρ+ ν)µ(t) = a(t)(1 + β̃µ(t))− h2a(t)

2β̃2(1− z(t)) +
ν

ρ
+ (ρ+ ν)µ(t).

With an interior choice of a(t) the first two terms in this law of motion cancel. The
resulting differential equation integrates to

µ(t) =

(

µ(0) +
ν

ρ(ρ+ ν)

)

e(ρ+ν)t −
ν

ρ(ρ+ ν)
. (10)

Recall that ż(t) = a(t)β̃(1− z(t)) = (1 + β̃µ(t))/(h2β̃) where we use equation (9). From
condition (10) we therefore have

z(t) = z(0) +

(

1

h2β̃
−

ν

h2ρ(ρ+ ν)

)

t+

(

µ(0) +
ν

ρ(ρ+ ν)

)

1

h2(ρ+ ν)

(

e(ρ+ν)t − 1
)

. (11)

To find µ(0) we compute the value of the objective function under the optimal policy,
W say, and differentiate it with respect to z(0). Under our conjecture that the a(t) path
is interior, all terms in the objective that are proportional to a(t)(1−z(t)) do not directly
depend on z(0), so we can neglect them. Moreover, from condition (11) the integral over
e−(ρ+ν)tν(1− z(t))/ρ only depends on z(0) through the term

∫

∞

0

e−(ρ+ν)tν

ρ
(1− z(0)) dt = (1− z(0))

ν

ρ

1

ρ+ ν
.

11This implies that lockdown is motivated by the aim to flatten the curve.
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We conclude that

µ(0) =
dW

dz(0)
= −

ν

ρ

1

ρ+ ν

and thus, from condition (10), µ(t) = µ(0).
This implies that the optimal path of a(t) satisfies

a(t) =
1− β̃ν

ρ(ρ+ν)

h2β̃2(1− z(t))

provided that this solution lies in [ā, 1]. That is, during the short term (when the number
of dead increases from z(t) ≈ 0 to a small population share) the optimal size of the
lockdown approximately equals

(

1−
β̃ν

ρ(ρ+ ν)

)

/(h2β̃
2).

Higher values for β̃ or h2, that is, a higher fatality rate or higher costs in the health care
sector thus increase the optimal severity of the lockdown. A more likely discovery of a
vaccine (higher ν) increases the stringency of the optimal containment measures because
it renders µ(0) = µ(t) more negative; this lowers ż(t) and shortens the expected duration
of the lockdown.

The implied solution for z(t) is given by

z(t) = z(0) +
1

h2

ρ(ρ+ ν)− νβ̃

β̃ρ(ρ+ ν)
t,

which is a valid solution only if ρ(ρ + ν) > νβ̃. Under this restriction a(t) is indeed
interior.12

Recall that in the absence of policy z(t) = 1 − (1 − z(0))e−β̃t and thus ż(t) ≈ β̃e−β̃t.
Comparing this expression with the time derivate of the preceding equality we conclude
that the optimal policy reduces the number of new deaths at time t by

β̃e−β̃t −
1

h2

ρ(ρ+ ν)− νβ̃

β̃ρ(ρ+ ν)
.

3.3 Taking Stock

Model 1 takes the exogenous lower bound ā as given and predicts the optimal duration
of a lockdown. When the burden that infections impose on the health care system is
sufficiently high then the optimal policy immediately imposes a lockdown and abandons
it before everybody is infected. If the burden is low, in contrast, then the optimal policy
never imposes a lockdown.

12Plugging the expression for z(t) into the expression for the optimal value of a(t) derived above yields
the duration until a(t) reaches the activity level 1—the duration of the lockdown. Since we view the
model is a model of the short run we do not emphasize this implied duration.
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Model 2 predicts an interior path for the control variable when a parametric condition
is satisfied. When the fatality rate or the cost of stress in the health care sector are higher,
or discovery of a vaccine is more likely then the optimal lockdown is tighter. Over time
the lockdown is slowly relaxed as the number of deaths decreases.

We view the predictions of the two models as complementary. In the next section we
calibrate the two frameworks and generate quantitative predictions.

4 Calibration and Quantitative Results

We calibrate the model such that one period in the model corresponds to one day. Fol-
lowing Alvarez et al. (2020) we assume an annual discount rate of five percent, which
translates into a daily rate of ρ = − ln(0.95)/365.13 Also following Alvarez et al. (2020)
we let ν = 0.0018; this corresponds to a probability of roughly 28 percent that a vaccine
is discovered during half a year,14 or to an expected time until discovery of about one and
a half years.

For model 1, we assume that the fundamental infection rate, β, equals (0.2)(0.8).
Alvarez et al. (2020) assume that this value equals 0.2; we reduce it to correct for the
simplified law of motion (see the discussion relating figures 1 and 2). Moreover, we assume
that λ = − ln(0.5)/182 such that the cost of stress in the health care sector (conditional
on ẏ(t)) falls by one half after half a year.

To calibrate the parameter h1 we rely on estimates according to which an unchecked
Covid-19 infection wave would have caused costs in the U.S. of 13 trillion dollars, cor-
responding to roughly 61 percent of annual U.S. GDP (Scherbina, 2020).15 Consistent
with Alvarez et al. (2020) and Scherbina (2020) we assume that this damage would have
occurred within half a year. In light of the model this implies

h1

∫ 182

0

e−(ρ+ν)te−λtẏ(t)dt = 0.61 · 365,

where the right-hand side accounts for the fact that daily output equals one in normal
times. Letting y(0) = 0.01 and evaluating the integral numerically we find that h1 ≈ 265.

For model 2, we calibrate the fatality rate, β̃, based on estimates according to which
an unchecked Covid-19 infection wave would have caused 1.9 million deaths in the U.S.,
corresponding to roughly 0.58 percent of the U.S. population (Scherbina, 2020).16 Con-
sistent with Alvarez et al. (2020) and Scherbina (2020) we assume that most of this
death toll would have occurred within half a year. This yields an estimate of β̃ =
− ln(1− 0.0058)/182. To calibrate the parameter h2 we again use the cost estimate of 61
percent of annual U.S. GDP (Scherbina, 2020). From this cost, we subtract the present
value of the permanent output losses due to lost lives after the end of the transition. The

130.95 = e−ρ365.
141− 0.28 ≈ e−ν182.
1513/21.4 ≈ 0.6075 (BEA data).
161.9/330 ≈ 0.0058 (Census data).
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remainder of the cost estimate is what we attribute to the cost due to health care stress.
Formally, we solve

∫ 182

0

e−(ρ+ν)th2

2
β̃2(1− z(t))2dt = 0.61 · 365− e−ρ182z(182)

∫

∞

0

e−ρtdt

or
∫ 182

0

e−(ρ+ν)th2

2
β̃2(1− z(0))2

(

e−β̃t
)2

dt = 0.61 · 365−
e−ρ182

ρ

(

1− (1− z(0))e−β̃182
)

.

Letting z(0) ≈ 0 and solving for h2 yields h2 ≈ 2.34 × 109. With these values the
parametric condition discussed in subsection 3.2 is satisfied.

Quantitative Predictions We use the formula from model 2 to compute the optimal
activity level during lockdown, a⋆(0) say. We find that the optimal lockdown is severe:
activity is reduced to roughly 33 percent of normal. Not surprisingly this depends on the
health care cost parameter, h2. As figure 3 illustrates a⋆(0) increases substantially (the
lockdown is less extreme) when the cost is lower (and we keep the other parameter values
unchanged).

0.0 0.5 1.0 1.5 2.0
h (multiples of baseline)0.0

0.2

0.4

0.6

0.8

1.0

a(0)

Figure 3: Predicted optimal activity level, a⋆(0), for different costs due to stress in the
health care system.

Next, we set ā in model 1 equal to a⋆(0) and numerically solve for the optimal duration
of the lockdown, T ⋆ say. We find that this duration equals nearly 52 days. After the
lockdown, roughly 13 percent of the population are infected. Figure 4 illustrates how the
objective of the government varies with the duration of the lockdown. The cost of getting
T wrong is asymmetric: Setting T a bit smaller than T ⋆ is less costly than setting it a bit
higher. If the lockdown is kept in place over a very long period (longer than roughly 90
days) then this policy generates a lower value than no lockdown at all.

Figure 5 illustrates how the optimal policy changes the dynamics of infections. The
solid line in the figure depicts the optimal path: it is relatively up to the optimal exit time
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Figure 4: Value of the program for different durations of the lockdown, T . The dashed
line indicates the value when there is no lockdown, T = 0.

and increases quickly thereafter. The dashed line depicts the path of y(t) in the absence
of policy.

The first line in table 1 summarizes these baseline results. The other lines in the table
report how the predictions change when we alter the calibration. When we assume a
lower discount rate then a⋆(0) falls and T ⋆ rises slightly: a more patient planner reduces
activity by more, for longer. The same holds true when we assume a higher discovery rate
for a vaccine. When we double ν to 0.0036 then a⋆(0) falls to roughly 28 percent and T ⋆

rises to roughly 83 days.
Changes in β do not affect the optimal severity of a lockdown. However, they do affect

T ⋆. A reduction in β by 20 percent increases T ⋆ to nearly 61 days, and an increase in
β by 20 percent lowers it to 45 days. Lowering β̃ by 20 percent increases a⋆(0) to 33.32
and reduces T ⋆ to 51.32, while increasing it by 20 percent implies a⋆(0) ≈ 32.62 and
T ⋆ ≈ 51.98. The model predictions thus are fairly robust to changes in the fatality rate.

Finally, when we increase λ by 10 percent such that after half a year, efficiency in the
health care sector has increased by roughly 53 percent (for instance because preparations
for the wave of infections have been particularly bad), then the optimal duration rises to
more than 56 days. When we strongly reduce λ, however, the optimal policy eventually
involves no lockdown at all. That is, when the health care system is adequately prepared
to deal with a pandemic such that there is no role for learning or efficiency improvements
over time then it is optimal not to impose a lockdown.
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Figure 5: Share of infected under the optimal policy (solid) and in the absence of policy
intervention (dashed).

5 Conclusion

We embed a lockdown choice in a simplified epidemiological model and derive formulas
for the optimal lockdown intensity and duration. The optimal policy reflects the rate
of time preference, epidemiological factors, the hazard rate of vaccine discovery, learning
effects in the health care sector, and the severity of output losses due to a lockdown.

In our baseline specification a Covid-19 shock as currently experienced by the US
optimally triggers a reduction in economic activity by two thirds, for about 50 days. On
an annual basis, this corresponds to a drop in GDP by 9.5 percent.

We hope that future research can build on our simplified frameworks.
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Table 1: Optimal Lockdown

Calibration a⋆(0) (in percent) T ⋆ (in days)

Baseline 32.98 51.64

Annual discount rate 3% 31.50 51.83
ν twice as high 28.12 82.83
β 20% lower 32.98 60.87
β 20% higher 32.98 44.70

β̃ 20% lower 33.32 51.32

β̃ 20% higher 32.62 51.98
λ 10% higher 32.98 56.31

Table 2: Quantitative predictions under different calibration assumptions. a⋆ denotes the
optimal activity level relative to normal and T ⋆ the optimal duration of the lockdown.
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A Solving the SIR Model

The system (1)–(3) can be solved as follows (Bohner et al., 2019): Let ξ(t) ≡ x(t)/y(t)
for y(t) 6= 0. We have

ξ̇(t) =
ẋ(t)y(t)− x(t)ẏ(t)

y2(t)
= (c− b(t))ξ(t),

such that
ξ(t) = ξ(0)e

∫
t

0 (c−b(s))ds ⇔ y(t) = x(t)κe
∫
t

0 (b(s)−c)ds

where κ ≡ y(0)/x(0). Substituting into equation (1) yields

ẋ(t) = −b(t)x(t)
κe

∫
t

0 (b(s)−c)ds

1 + κe
∫
t

0 (b(s)−c)ds
,

which has the solution

x(t) = x(0)e

∫
t

0
−κb(u)

κ+e

∫
u
0 (c−b(s))ds

du
. (4)

Accordingly, we can solve equation (2) for

y(t) = y(0)e

∫
t

0
b(u)

1+κe

∫
u
0 (b(s)−c)ds

−c du
(5)

and equation (3) for

z(t) = 1− x(t)
(

1 + κe
∫
t

0 (b(s)−c)ds
)

s.t. (4), (6)

where we use the fact that the population size equals unity.
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