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Abstract

Are financial intermediaries inherently unstable? If so, why? What does this
suggest about government intervention? To address these issues we analyze
whether model economies with financial intermediation are particularly prone
to multiple, cyclic, or stochastic equilibria. Four formalizations are considered:
a dynamic version of Diamond-Dybvig banking incorporating reputational
considerations; a model with delegated investment as in Diamond; one with
bank liabilities serving as payment instruments similar to currency in Lagos-
Wright; and one with Rubinstein-Wolinsky intermediaries in a decentralized
asset market as in Duffie et al. In each case we find, for different reasons,
financial intermediation engenders instability in a precise sense.
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Banks, as several banking crisis throughout history have demonstrated,
are fragile institutions. This is to a large extent unavoidable and is the
direct result of the core functions they perform in the economy. Finance
Market Watch Program @ Re-Define, Banks: How they Work and Why
they are Fragile.

Introduction

It is often said that banks, or more generally financial intermediaries, are in-
herently unstable and prone to volatility. This seems to be based on the notion
that financial institutions are special compared to, say, producers or middlemen in
retail. Keynes (1936), Kindleberger (1978) and Minsky (1992) are names associated
with such a position, with Williams (2015) providing a recent perspective (see also
Akerlof and Shiller 2009 or Reinhart and Rogoff 2009). Rolnick and Weber (1986)
provide evidence of the widespread acceptance of this view when they say: “Histori-
cally, even some of the staunchest proponents of laissez-faire have viewed banking as
inherently unstable and so requiring government intervention.” As a leading case,
Friedman (1960) defended unfettered markets in virtually all contexts, but advo-
cated bank regulation in his program for monetary stability. As additional evidence,
consider the voluminous literature dedicated to the study of bank runs.!

We share an interest in the questions with which Gorton and Whinton (2002)
start their survey: “Why do financial intermediaries exist? What are their roles? Are
they inherently unstable? Must the government regulate them?” While there are
different ways to proceed, our approach is to build formal models of the institutions
and see if they are particularly prone to multiple equilibria or volatile dynamics,

including cyclic, chaotic or stochastic outcomes that entail fluctuations even if fun-

damentals are constant. Central to this approach, by models of intermediation we

'For now we discuss bank runs, panics, financial crises, etc. without defining these formally.
As Rolnick and Weber (1986) put it, “There is no agreement on a precise definition of inherent
instability in banking. However, the conventional view is that it means that general bank panics
can occur without economy-wide real shocks.” They add “The usual explanation... involves a local
real economic shock that becomes exaggerated by the actions of incompletely informed depositors,”
and suggest this is consistent with Friedman and Schwartz’s (1963) view. In terms of models, Chari
and Jagannathan (1988) have withdrawals by informed depositors lead to withdrawals by others,
while Gu (2011) formalizes this as rational herding. Our approach is different, and avoids fixating
only on runs, but does focus squarely on volatility “without economy-wide real shocks.”



mean more than models with intermediation. It does not suffice to assert, say, that
households lend to banks and banks lend to firms but households do not lend to
firms — that may be a model with banking but not of banking.?

While there is much research on financial intermediaries, there is no generally-
accepted, all-purpose model. This is because the institutions perform a myriad of
functions that are difficult to capture in a single setup: they serve as middlemen be-
tween savers and borrowers or asset sellers and buyers; they find, screen and monitor
investment opportunities on behalf of depositors; they issue liabilities like demand
deposits that facilitate third-party transactions; they provide liquidity insurance or
maturity transformation; they are safe keepers of cash and other valuables; and they
maintain privacy about their assets and/or their customers. Different approaches
are used to model these diverse activities, and, in this tradition, we consider several
distinct specifications. All of these are constructed using building blocks taken from
off-the-shelf models, although the ways in which we combine and apply them are
novel, and lead to new insights.

The first formulation extends Diamond and Dybvig’s (1983) model of liquidity
insurance (or maturity transformation) to an infinite horizon, to highlight bankers’
reputation as in Gu et al. (2013a), which is itself based on Kehoe and Levine (1993).
The second features fixed costs of exploiting investment opportunities, similar to
Diamond (1984) and Huang (2017). The third, an adaptation of Nosal et al. (2017),
puts intermediaries like those in Rubinstein and Wolinsky (1987) into an OTC asset
market similar to Duffie et al. (2005). The fourth has bank liabilities serving as
payment instruments, similar to currency in Lagos and Wright (2005) or Berentsen

et al. (2007), in an environment where bank liabilities are less susceptible to loss or

2The declaration that households lend to banks and banks lend to firms but households do
not lend to firms is reminiscent of monetary economics following Clower (1965), who said money
buys goods and goods buy money but goods do not buy goods. While once a popular shortcut,
it is hard to argue that Clower (cash-in-advance) constraints constitute the last word in monetary
theory, and we feel similarly about banking (see Wright 2017 for more on this). Of course it is not
necessary for every study to make everything endogenous — e.g., Debreu (1959) made progress using
a theory with firms and households but not a theory of firms and households — but it is crucial,
we think, to have financial institutions emerge endogenously when asking if they are unstable as
“the direct result of the core functions they perform” (from the epigraph).



theft, as in He et al. (2007) and Sanches and Williamson (2010), or less sensitive
to information, as in Andolfatto and Martin (2013), Dang et al. (2017) and others
mentioned below.

We find in each case that financial intermediation can indeed engender instability:
an economy with these institutions is more likely to have multiple equilibria or
volatile dynamics than the same economy without them. In some cases there is a
unique equilibrium, and it is stable, without intermediation, but multiple or volatile
equilibria with it; in other cases both can have multiple or volatile equilibria, but
intermediation expands the set of parameters for which this is the case. Further,
while the economic logic differs across models, in each case the results are directly
related to the raison d’etre for intermediation.

As the literature on intermediation is vast, we refer to standard sources (e.g.,
Freixas and Rochet 2008; Calomiris and Haber 2014; Vives 2016). We do mention
Shleifer and Vishny (2010), which has a similar motivation, even if our methods are
different, coming mainly from monetary theory (e.g., Lagos et al.2017; Rocheteau
and Nosal 2017). Thus, we use infinite-horizon models, since we are interested in
economic dynamics, and, moreover, finite-horizon models are ill suited for capturing
salient features of financial activity, including unsecured credit, reputational con-
siderations and the use of money. We also use general equilibrium, in the sense of
logically closed systems, making as few as possible exogenous restrictions on prices,
contracts or behavior. This is to see if instability arises from intermediation per se
and not extraneous features like noise traders, sticky prices, irrational expectations
etc. To be clear, we have frictions like limited commitment, imperfect informa-
tion/communication, and spatial/temporal separation, but those are imposed on
the environment, not on prices, contracts or behavior. Thus, we think, what follows

are models of financial intermediation, not just with financial intermediation.?

3 Anticipating some readers might find four models more than they want to see in one paper,
to rationalize this, the point is that the results are robust to different ways of formalizing the roles
of financial intermediaries. We revisit that point in the Conclusion, where we also discuss the
common thread across the different environments. Moreover, as the presentation of each model is
self contained, readers could pick and choose without loss of continuity.



Model 1: Insurance

Our various specifications are novel, but all make use of standard building blocks
from the literature that have been deemed relevant for banking. The first one
extends Diamond and Dybvig’s (1983) popular model to an infinite horizon. As in
Gu et al. (2013a), this lets us incorporate reputational considerations a la Kehoe
and Levine (1993).

Time is discrete and infinite. Some agents live forever, while at each date a [0, 1]
continuum of other agents are around only for that period — a simple way to make
them care less about reputation (in principle, they can be around for any N < oo
periods, but N = 1 is obviously easiest). Each period has two subperiods. The
short-lived agents are homogeneous ex ante but face idiosyncratic shocks: they are
impatient with probability 7 and patient with probability 1 — 7, where impatient
(patient) agents derive utility only from consumption in the first (second) subperiod.
Given the shock, which is private information, they have utility w;(c;), j = 1,2,
where ¢; is consumption in subperiod j, with v} > 0 and v} < 0. Infinite-lived
agents have period utility v (¢) for ¢ in either subperiod, with v" > 0, v” < 0 = v (0).

Short-lived agents have an endowment of 1; infinitely-lived agents have 0. The
standard technology is this: a unit of the good invested at the start of the first
subperiod yields R > 1 units in the second subperiod; or, the investment can be
terminated at the end of the first subperiod to get back the input.” The good can
also be stored one-for-one across subperiods. As in any Diamond-Dybvig model, to
insure against the shocks, the short-lived agents can form a coalition that resembles

a banking arrangement. Thus, they design a contract (¢, c2) to solve

max {mu1 (c1) + (1 = 7) uz (c2)} (1)
st (1—m)ca=(1—mc1) R (2)
Co > C1, (3)

4Many applications of Diamond-Dybvig assume u; (-) = us (-), but not all (e.g., Peck and Shell
2003). The flexibility of the general version is useful for constructing examples.

See Andolfato et al.(2019) for a version of Diamond-Dybvig with a security market, where
early termination entails a cost, which similarly implies it reduces the return on investment.



where (2) is feasibility and (3) is a truth-telling constraint (if ¢, < ¢; patient agents
would claim to be impatient, get ¢; and store it to the next subperiod). There are
also nonnegativity constraints omitted to save space.

This problem is well understood. One result is: assuming u} (1) > uj (R) R and
uyj(c) < uy(c)Rat ¢ = R/(1—7m+7R), we get 1 < ¢ < ¢5 < R, so (3) is not
binding, and full insurance/efficiency obtains. However, this requires commitment;
otherwise, when they learn they are patient and are supposed to make transfers
to the impatient, agents will renege. Given our short-lived agents cannot commit,
naturally, there emerges a role for long-lived agents as bankers who accept deposits,
invest them, and pay off depositors on demand at terms to be determined. Impor-
tantly, bankers do not have exogenous commitment ability — it is endogenous and
based on reputation. Thus, bankers honor obligations lest they get identified as
renegers, whence they are punished to autarky, which is a credible threat because
there are many perfect substitutes for any given banker.

However, a banker may be tempted to misbehave as in the “cash diversion”
models in Biais et al. (2007) or DeMarzo and Fishman (2007): if he misappropriates
d deposits, he gets payoff Ad, where ) is not too big, so this is socially inefficient, but
he might do it opportunistically. As in Gu et al. (2013a,b), the risk is that he gets
caught, and punished, with probability u < 1, where one interpretation is that p is
the probability one generation of depositors can communicate his misbehavior to the
next generation.® Now depositors may set d < 1, and invest 1 — d on their own, to
reduce bank incentives to misbehave, different from most papers that simply assume
d = 1, but similar to Peck and Setayesh (2019). In addition to d, the contract now
specifies payouts per deposit contingent on withdrawal time r;, j = 1,2, and the
banker’s income b € [0, d], which he invests for utility v (bR).

Since there is more than one long-lived agent, the short-lived agents can choose
any of them to act as banker, and in the spirit of Diamond-Dybvig they make

this choice as a coalition. However, we assume they can choose only one, to avoid

6While p = 1 is fine, it does not simplify things much, and it is known from other applications
that g < 1 can be interesting (e.g., the extension of Kocherlakota 1998 in Gu et al. 2016).



determining the optimal number of bankers, something we do in Model 2, but would
be a distraction here; it can be rationalized by assuming that it is too costly to
monitor more than one banker. Still, since they can choose any one, for reasons
often summarized as Bertrand competition the contract maximizes the expected
utility of the depositors. Yet a banker may get a positive surplus — a rent on his
option to act opportunistically — because the contract must give him incentives to
not misuse deposits for his own gain.

The banker’s incentive constraint is
v (0R) + BVie1 > Ady + B (1 — p) Vi, (4)

where 3 is his discount factor, V; is his equilibrium payoff, and the RHS is the
deviation payoft, including Ad for sure and V;; iff he is not caught. Note that V,
is his valuation next period, facing a new generation of depositors, and hence is taken
as given when designing a contract at ¢. Also note that bankers do not misuse d on
the equilibrium path, but if one were to, he would get Ad but not v (Rb) + A (d — b).

This leads to the contracting problem

g max {muy (dyryy + 1 —dy) + (1 — 7) ug [dyroy + (1 — dy) R} (5)
st (1 —m)dyre = (dy — by — wdyryy) R (6)

Tot 2 T (7)

My — v (0 R) < ¢, (8)

where (8) rewrites (4) using ¢, = fuV,11. Note that ¢, is a bank’s franchise value,
capturing the banker’s reputation for trustworthiness. Substituting (6) into (5) to
eliminate 75, ignoring ¢ subscripts for now, and taking FOC’s wrt (11, d, b) we get
ry o d{m[u} (c1) — Ruy(e2)] —my (1 =7+ Rm)}ry =0
d : {(r1—=1)7uj(c1) — Ruy (co)] +my [R— (1 — 7+ Rr) 1] —nuA}d =0
b o [=uy(c2) = my 4+ mp0" (BR)] b =0,
where ¢; = dr; +1—d and ¢y = dry + (1 — d) R, while n; and 71, are multipliers for

constraints (7) and (8).



These FOC’s yield two critical values, ¢* > 0 and g} < ¢", delineating three
regimes: (i) If ¢ > ¢* then (8) is slack, and b = 0, since the franchise value keeps
the banker honest without b > 0. In this case there is a continuum of contracts
achieving the full-insurance outcome, because depositors can have the bank invest a
lot or a little, and in the latter case invest the rest on their own (exactly as in Peck
and Setayesh 2019). (i) If ¢ € [¢, ¢*) we must either lower d < d* or raise b > 0
to satisfy (8). While lowering d from d* means less-than-full insurance, this is a
second-order cost by the envelope theorem, so the contract sets d = ¢/ and keeps
b=0. (iii) If ¢ < ¢, lowering d further entails too much risk, so it sets b > 0. In
case (i), one of the payoff-equivalent contracts has r; = 7o, and (ii)-(iii) the unique
contract has r; = ry; hence wlog we set r; = r5 = r from now on.

In regime (iii), (d,r,b) satisfies

b = d/RIR—(1—7+ Rn)r] 9)
¢ = A —v(bR) (10)
uj (¢2) _ m (R-1)(A-m) ,
u, (c1) — Rub(c;)  1—7+Rr A v (bR) —1 (11)

withe; =1—d+(d—b)R/(1 =7+ Rm),co=(1—d)R+(d—b) R/ (1 — 7+ Rm).
These and the analogs from regimes (i)-(ii) characterize the contract given ¢, and in
particular, one can easily check V' (¢) < 0 V¢ < 925, which is important below. This
is shown in Fig. 1 for the following parameterization:”

Example 1: Let v (b) = Bb,

(Cl —+ 8)1_01
1-— 01

— gl (co+e) 772 —glmo2

U1 (Cl) = Al and U9 (Cg) = A2

1 — 09 ’
where B = 0.95, 01 = 09 =2, =001, A4y =1, A, =01, R=21, p = 0.7,
m=0.25, A =0.6 and 5 = 0.99.

As mentioned, the contract takes ¢ as given. To embed this in general equilib-

rium, use ¢, = BuV;i1 to write V; = v (b,R) + BV;41 as a dynamical system,

b1 = f (&) = Buvlb(¢,) R] + By, (12)

"Notice g% > 0 here (in fact, for the example &5 = 0.3257 and ¢™ = 0.600); the case &) < 0 is less
interesting because it never has banking in steady state. In terms of primitives, one can show that
o >0iff m[u) (1) — Ruy (R)][(R—1)(1 —m)v' (0) = A] > uh (R) (1 — 7+ Rm) A

8
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Figure 1: Model 1, bank contract vs ¢

where b (¢,) comes from the contracting problem. Equilibrium is defined as a nonneg-
ative, bounded path for ¢, solving (12), from which the other endogenous variables
follow using the FOC’s. A stationary equilibrium, which is the same as a steady
state here, solves ¢ = f (g_b) The nature of steady state depends on whether 925 <0

or ¢ >0 (conditions for which are given in fn. 7). Appendix A proves:

Proposition 1 If& < 0 the unique steady state has no banking, d = 0. If& >0
the unique steady state has ¢ € (0, g?ﬁ) and banking, d > 0.

For dynamic equilibria, first note from (12) that f (¢,) has a linear term that
is increasing and a nonlinear term that is decreasing because V' (¢) < 0. If the
net effect implies [’ (¢,) < 0 over some range the system can exhibit nonmonotone
dynamics. For Example 1, Fig. 2a shows f and f~!, which cross on the 45° line at
¢ = 0.3215. In this case the system is monotone and there is a unique equilibrium,
which is the steady state, because that is the only bounded path solving (12). To
see this is not true in general consider:

Example 2: Same as above except o1 = 10 and = 1.

As Fig. 2b shows, now f/(¢) < —1, and so f and f~! intersect not only on the

45°, but also off it, at (¢, @) and (¢, ¢;) with ¢ = 0.0696 and ¢; = 0.0689. As

is standard (see Azariadis 1993), this means there is a two-cycle equilibrium where

¢, oscillates deterministically between ¢; and ¢. It also means there are sunspot



equilibria where ¢, fluctuates randomly between values close to ¢; and ¢, (see
Appendix B). Thus we can get deterministic or stochastic volatility with banking
and not without it. That does not mean banking is a bad idea, as it provides
insurance to agents who cannot insure each other, due to commitment issues. It

does mean banking can engender instability.

Ptq

~ ®,

0 @
Figure 2a: Model 1, monotone f Figure 2b: Model 1, nonmonotone f
= e
1 2 3 4 1 2 3 4
t t
o —
1 2 3 4 1 2 3 4

Figure 3: Model 1, time series for a two-cycle

The intuition is straightforward: if next period V;,; is high then this period ¢,
is high and we can discipline bankers with low 0;; but that makes the current V; and

hence ¢,_; low. This induces a tendency towards oscillations, but for a cycle the

10



effect has to dominate the linear term in f(¢,), which is why parameters matter.
Fig.3 plots time series of (¢,d,b,r) over the cycle in Example 2. Notice r moves
with ¢ and b against ¢. Whether d moves with or against ¢ depends on parameters,
but here it is the latter. While the point is not to take this example seriously
in a quantitative sense, it is worth noting that the theory does make qualitative

predictions, and does not say “anything goes.”

Py

Figure 4: Model 1, two- and three-cycles

Fig. 4 displays the existence of two-cycles in a different way, as fixed points of
the second iterate f2 = f o f, for another parameterization:
Example 3: B=1, 0, =14, 05 =15, ¢ =0.01, A; =1, A, = 0.075, R = 2.2,
p=1 7=0.28, A=0.75 and = 0.76.
Notice f2 has three fixed points, ¢, plus ¢; and ¢, from the two-cycle. Also shown
is f3, which has seven fixed points, ¢ plus a pair of three-cycles. Standard results
(again see Azariadis 1993) say the existence of three-cycles implies the existence of
n—cycles for any integer n, plus chaos, which is basically a cycle with n = cc.

To summarize, banking can introduce many equilibria, including deterministic,
stochastic and chaotic dynamics, directly attributable to the idea that banks depend

on trust, and at least to some extent that is a self-fulfilling prophecy.

11



Model 2: Delegated Investment with Fixed Costs

The next formulation has intermediation originating from economies of scale,
based on Diamond (1984) and Huang (2017) (see also Leland and Pyle 1976 or
Boyd and Prescott 1986 on the bigger picture). Time is discrete and continues
forever as in Model 1, but here all agents are infinitely lived. Also, they are now
spatially separated — say, across a large number of islands — and randomly relocated
at the end of each period, following a literature on banking including Champ et
al. (1996), Bencivenga and Smith (1991), Smith (2002) and Bhattacharya et al.
(2005).® Economies of scale are captured as follows: agents must pay a fixed cost x,
in terms of goods, to locate/evaluate/monitor investment projects, after which any
project returns R per unit invested.

Period utility is w (x) — ¢(d), where x is consumption and d investment (say,
output produced one-for-one with labor) where v/, ¢’ > 0 and ¢ > 0 > «”. Also,
u (0) R > ¢ (0), so that agents invest if x = 0. Normalize u (0) = ¢(0) =0. If s > 0
the payoff is

Wi = max{u(z) —c(d)} st z = Rd — &, (13)

z,
from investing on one’s own (omitting nonnegativity constraints as above). Suppose
K is too high to support this, so W; < 0, while the autarky payoff is Wy = 0. Now
consider agents forming a coalition where some, that we call depositors, delegate
their investment to others, that we call bankers, to share the fixed cost.
As is standard in models with nonconvexities, the coalition uses a lottery to
chose a subset of members to act as bankers.” Thus, w, is the probability of being a

banker, equal to the measure of bankers if the island population is normalized to 1.

8The main function of random relocation here is to let us avoid long-term contracting con-
siderations, which are interesting but complicated (e.g., in Gu et al. 2013a, bankers’ rewards can
be backloaded over multi-period contracts). Elsewhere in the paper we avoid those issues using
short-lived agents, but here we want all agents to be long-lived, so that ex ante anyone can po-
tentially be a banker. In any case, it is important to emphasize that these are not restrictions
on contracting per se, but assumptions on the environment that impinge on the contract. Does
it matter? Yes, because without making them explicit one cannot know, in general, how these
assumptions impinge on all endogenous variables.

9This is similar to, e.g., Rogerson’s (1988) indivisible-labor model, except unlike his, our agents
cannot commit, so our contracts must be incentive compatible before and after the lottery.

12



As in Model 1, bankers have the option to misbehave, with A and p playing similar

roles. The relevant incentive condition is therefore

)\(1 —wt) Tt

Wt

Vi1 = + (1 = 1) BV, (14)

where the RHS is the deviation payoff, given each depositor is promised z; and
each banker controls (1 — wy) z;/w; of the resources.’’ The trade-off, as emphasized
in Huang (2017), is that having fewer banks saves on fixed costs but raises their
temptation to misbehave, because they must be larger, given total deposits.

The contract maximizes the payoff to the representative agent on an island

W(6) = max wlu(X) - c(D] + (1 - o) [u(@) - (@)
stwX +(1l—-w)z=RwD+ (1 —w)d] — kw

u(z)—c(d) >0

T < 9,

where ¢, = pfVii1/A, while (X, D) and (z,d) are the consumption/investment
allocations of bankers and depositors. Here (16) is the resource constraint, (17) is
the incentive constraint for depositors, and (18), which rewrites (14), is the incentive
constraint for bankers.

Substituting (16) into (15) to eliminate X, and letting 7 and v be multipliers,
we get the FOC’s:

D : W(X)R-(D)=0
d @ (1-w)[u'(X)R—-c(d)]—nd(d)=

v (I=w) W' (@) =" (X)] +nu' (2) =y—— =0

One can check W’ (¢) > 0. Moreover, W (0) = 0, so we get no banking at ¢ = 0.

In the limit as ¢ — oo we get w — 0, which means very few banks but they are

0Here we assume that a deviating banker receives u(X) — ¢(D) in addition to A\[(1 —w;)xs/we],
slightly different from Model 1. In both cases, these assumptions are made mainly for convenience,
and neither one is unambiguously better.

13



huge. Also as ¢ — oo we get W (¢) — W* = max, 4 [u(x) — c(d)] st x = Rd, which
totally dissipates the fixed cost (i.e., delivers the same payoff as k = 0).

Fig. 5 shows the contract given ¢ for the following parameterization:
Example 4: Let

r4e) 77—l

l—0

u(x) :A( and ¢ (d) = Bd,

with A =¢ =0.001, 0 =2, B=0.1, k =230, R=12, § =0.76, u = 0.95 and
A=9.

Notice that there is a cutoff ¢, which is ¢ = 0.0182 in this example, and banking is
viable iff ¢ > ¢.

w

——

Figure 5: Model 2, bank contract vs ¢

L

o
A

0 ¢

To embed this in equilibrium use V; = W (¢,) + 5Vi41 and emulate the methods
from Model 1 to get

o= f (¢t+1) = ﬁ_)l\uW (¢t+1) + B (19)

Equilibrium is a bounded, nonnegative solution to (19). Notice f(¢) = B¢ for
¢ < ¢, and f (¢) < ¢ for big ¢ due to the fact that W < W*. Then we have:

Proposition 2 There is a steady state at ¢ = 0, without banking. There can be

14



steady states with banking, generically an even number that alternate between stable

and unstable.

Fig. 6 shows Example 4 has three steady states, ¢ = 0, plus two with banking,
¢y > ¢, > 0. This is different from Model 1, which has a unique steady state ¢, and
has nonstationary equilibria iff f’ (q?ﬁ) < —1. Now f'(¢) > 0, so deterministic cycles
are impossible, but if there are multiple steady states we can use a different approach
to construct sunspot equilibria around the stable ones.!'! Appendix B shows there
are equilibria where ¢ fluctuates between ¢, and ¢z for any ¢, € (¢, ¢;) and
5 € (¢1,0y). In particular, ¢, < (;S means we switch stochastically between d; > 0
and d; = 0 — i.e., random episodes of crises, where deposits dry up and banking
shuts down, due to sunspots, which are fundamentally irrelevant events. This is

again different from Model 1, where d; can fluctuate, but only with d; > 0 V¢.

?y
@y 0.1 b,

Figure 6: Model 2, monotone f with multiple
steady states

While Models 1 and 2 are different, in terms of economics and mathematics,
Appendix C presents an environment that integrates elements of both. It has two

agents on each island, one that is infinitely lived and one that is only around for

"To give credit where credit is due, in Model 2 we use the method in Azariadis (1981), while
in Model 1 we use the method in Azariadis and Guesnerie (1986).
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one period, who negotiate the contract using generalized Nash bargaining (having
just two is simpler, but we also considered many depositors and one banker, with
multilateral bargaining, and got similar results). There are gains to delegating
investment due to k > 0, as in Model 2, but only long-lived agents can act as
bankers, as in Model 1. Letting # denote bankers’ bargaining power, we get a
dynamical system ¢, = f (qﬁt +1) that can be nonmonotone for § < 1. Appendix C
shows we can have multiple steady states, with f’(¢) > 0 around the stable ones
and hence sunspot equilibria as in the benchmark Model 2, as well as f' (¢) < —1
around the unstable steady states and hence cycles and sunspots as in Model 1.
The reason f (¢) is decreasing in Appendix C is the following well-known (see
Kalai 1977) feature of Nash bargaining: agents with bargaining power # < 1 can
get a smaller surplus when the bargaining set expands. Here this is manifest in
bankers’ surplus falling with ¢, similar to ¥’ (¢) < 0 in Model 1. That does not
happen in the baseline Model 2, where agents in the coalition are ex ante identical
and hence treated symmetrically, so they all get a bigger surplus when ¢ increases.
Details aside, the point is that there are distinct ways to formalize how banking

might engender instability in models based on reputation/trust.'?
Model 3: Asset Market Intermediation

Banks are not the only interesting financial intermediaries. Work following Duffie
et al. (2005) studies asset markets using search theory, where agents may trade with
each other, or with middlemen/dealers that buy from those with low asset valu-
ation and sell to those with high valuation. We pursue this with a few changes
in their environment. In particular, most papers following Duffie et al. (2005) give
middlemen continuous access to a frictionless interdealer market (with some excep-
tions, e.g., Weill 2007, but they do not study the issues analyzed here). Hence,
their intermediaries do not hold assets in inventory. Our middlemen are more like

those in Rubinstein and Wolinsky (1987), who buy goods from producers and hold

12Model 1 can be interpreted as bargaining where banks have # = 0. Hence, one may conjecture
that dynamics like those in Appendix C emerge in Model 1 if we allow 6 € (0,1), but then Model
1 becomes intractable; the setup in Appendix C is relatively quite tractable.
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inventories until they randomly sell to consumers. However, here they trade as-
sets and not goods, which matters. The following presentation builds on Nosal et
al. (2017), although we amend their setup in many ways, including: adding het-
erogenous projects; modifying the market composition conditions (see fn.13); and
switching from continuous to discrete time. All of these affect the results.

There are large numbers of three risk-neutral types, B, S and M, for asset
buyers, sellers and middlemen. Type M agents stay in the market forever, while
type S and B stay for one period (we also studied alternatives, like letting everyone
stay forever, with similar results). Upon exit S and B are replaced by “clones” to
maintain stationarity (a device borrowed from Burdett and Coles 1997). Type B
agents, sometimes called end users, want to acquire an asset — let’s call it capital —
to implement a project for profit @ > 0, where 7 is observable when agents meet,
but random across end users with CDF given by F' (7). The originators of capital,
type S, if they enter the market each bring 1 indivisible unit; those that stay out
put their capital to alternative uses, defining their opportunity cost of participation,
denoted k4 > 0, which for simplicity is the same for all S.

Type M agents, who are always in the market, can acquire capital from S, but as
usual in these models their inventories are restricted to k£ € {0, 1} (with exceptions,
e.g., Lagos and Rocheteau 2009, but they do not study the issues analyzed here).
Let n; be the measure of type M at t with £ = 1. Capital held by M depreciates
by disappearing each period with probability 6 > 0, but while he holds it M gets
a return p > 0. His crucial choice is then, if he has £ = 1 and meets B, should he
trade or keep k for himself? This depends on fundamentals, of course, including the
end user’s 7, but as we show below, it can also depend on beliefs.

Market composition is determined as follows: the measures n,, and n;, of types

M and B are fixed, but entry by S makes n, endogenous.'® Given this, the meeting

13Entry by S is nice because it lets us compare economies with the same entry conditions with
and without middlemen. Still, results for entry by M are given in Appendix D; entry by B is less
interesting and hence omitted. These alternatives are all better than Nosal et al. (2017), where
agents choose to be either type M or S. That is awkward because in cyclic equilibria they switch
back and forth over time between being M and S. Here no one switches, but participation by a
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technology is standard: each period everyone in the market contacts someone with
probability «, and each contact is a random draw from the participants. In partic-
ular, if V; is the total measure of participants then types M and S both meet type
B with probability an,/N;, so M has no advantage over S in that regard.'* When
B and S meet they trade for sure since this is S’s only chance and cost k4 is sunk.
Similarly, when S meets M with k = 0 they trade for sure. When M with k£ = 1
meets B, however, they may or may not trade.

As regards prices, if type j gives ¢ capital the latter pays p;; (in terms of trans-
ferable utility) determined by bargaining. Thus, if 3;; is the total surplus available
when 7 and j meet, as long as X;; > 0 they trade, and type i’s surplus is 0;;%;;,
where 6;; € [0,1] is his bargaining power. To flesh this out, let V;, and V;; be
value functions for types S and B; let V}; be the value function for M when he has

k € {0,1}; and let A, = Vi, — V54 be M’s gain from having inventory. Then
Ypst =T, Lmst = (1 —0) BA1, g =7 — (1 = 6) BA,
where 3 € (0,1) is M’s discount factor.!® Bargaining then yields
Dost = 0o, Dimst = Osm (1 — ) BALL1, Domit = OppT™ + Oy (1 — 0) BA1. (20)

When M with £ = 1 and B with project m meet, they trade with probability

7¢ = 7 (7, R;), where

0 ifr <R
T(m,R)=14¢ [0,1] ifr=R (21)
1 ifr>R

and Ry = (1 — §) A1 is the reservation value of a project making ¥, = 0. Hence,

the market payoff for B with project 7 is

aNg an
L0t 4+ ——7 (70, Ry) Oy [1 — (1 — 0) BA1] - (22)

V(0 =", N,

type can vary, as in conventional search theory (e.g., Pissarides 2000).

4 This is different from the original Rubinstein-Wolinsky setup, which is based entirely on M
being better than S at search; we could allow that, too, but do not need it.

15Note there are no continuation values or threat points for S and B, as they are in the market
for just one period, but while that simplifies some algebra it is not otherwise important.
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The first term on the RHS is the probability B meets S, times his share of the
surplus; the second is the probability he meets M with £ = 1, times the probability
they trade, times his share of the surplus; and note prices do not appear since they

were eliminated using (20). Similarly, the market payoff for S is

any e
el F
Vg,t Nt 05[)/0 d (77') +

a(ngy, —nyg)

0 (1= 0) (29

The payoff for M depends on inventory. Using R, = (1 — §) 5A41, we have

cmsﬁt

Vor = N Oms Ry + BVo 441 (24)
¢
an e
‘/17t = p + Tbemb/ (ﬂ' — Rt) dF (71') + (1 — 5)6‘/1,15_;_1 + 5&‘/07154_1. (25)
t R,

Subtracting and simplifying with integration by parts, we get

Oénbemb /OO @ns,tems

[1— F(m)|dr —

Rt_lz(l—é)ﬂ{p+3t+ . Nt

Rt} , (26)

t

giving the evolution of R over time. The evolution of inventories held by M is

(M, — M) arng g (1 — 0)
} " Ny ’

(27)

et = 1 (1 — 6) {1 - ‘%’?ET (7, R)
where E7 (7, R) = prob(m > R) is the unconditional probability that M and B
trade. The first term on the RHS is current n times the probably a unit of £ does
not depreciate or get traded; the second is current n,, —n times the probability M
acquires k£ and it does not depreciate.
We can eliminate V; in (26)-(27) using S’s entry condition, Vi; = kg, which
reduces to
anpd B + o (N, — ny) Qs Ry

_— — Ny — Ny, 28
Nt . ny —n (28)

What’s left is a two-dimensional dynamical system that is compactly written as

=Ry (29)

Given an initial ng, equilibrium is a nonnegative, bounded path for (n;, R;) solving

(29).16

16 A distinction between this model and others in the paper is that this system is two dimensional:
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With no intermediaries, n,, = 0, the equilibrium is basically static and it is easy
to check that it is unique. With n,, > 0, first note that the locus of points satisfying
n = f(n,R), called the n-curve, and the locus satisfying R = g (n, R), called the
R-curve, both slope up in (n, R) space. Then, to develop some intuition, consider
the special case where m = 7 is constant. As shown in Fig. 7, for this case there are
three possible regimes: (i) R < 7, so M with £ = 1 and B trade with probability
T =1; (ii) R > 7, so they trade with probability 7 = 0; and (iii) R = 7, so they
trade with probability 7 € (0,1). Appendix A proves:

Proposition 3 With m = 7 there exist p > 0 and p > p such that: (i) if p € [0, p)
there is a unique steady state and it has R < 7; (i) if p € (p,00) there is a unique
steady state and it has R > 7; (i) if p € (p, p) there are three steady states, R < T,

R>m, and R=T.

R
R-curve
T ?
n-curve
— — n
# 7

Figure 7: Model 3, phase plane

R is a jump variable, like ¢ in the previous sections, while n is a (predetermined) state variable,
so transitions are nontrivial. The version of Model 3 in Appendix D, with entry by M instead
of S, is different: there one can solve a univariate system R;_; = G (R;) to get the path for Ry,
after which n;, N; etc. follow from simple conditions. Intuitively, with entry by M (entry by .5)
the model is (is not) block recursive, as discussed in Shi (2009). Hence, Appendix D delivers more
results, including chaotic dynamics, but we still prefer entry by S as a benchmark model.
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For several reasons we prefer a nondegenerate F (1).'" So, consider a smooth
mean-preserving spread of the degenerate case, leading to the shown in phase plane
Fig. 8.

Example 6: Let

T/ o if 0 <7 <m
F(r)=4 m+ (ms —m) (7w —mg) [/ (me —mo) if mp <7<y (30)
o+ (1—m3)(m—ma)/(ma—ma) ifme<m<my

with mg = 0.99, 71 = 0.05, 713 = 1.01, 73 = 0.95 and 7wy = 2. Also, let a = 1,
ks = 0.1, n, = 0.05, n,, = 0.5, Oy, = 0.5, 0, =1, 0,,, = 0.7, 5 =1/1.04, 6 = 0.008
and p =0.2.

Fig.8 is similar to Fig. 7, except the slope of the n-curve is always positive. Hence

the results are similar to Proposition 3, including multiplicity.

-t n = constant

|
|
|
I
L
n |

Figure 8: Model 3, phase plane with two-cycle

Here is the intuition. First suppose R is low, so M trades k£ to B with a high
probability. Then the probability M has k = 0 is high, which is good for sellers,

1"For the nondegenerate F () studied below, the flat portion of the n-curve in Fig.7 is elimi-
nated. Then in any steady state M and B are indifferent to trade only in the rare event 7 = R, in
contrast to the mixed-strategy equilibrium in the degenerate case, where they are always indifferent.
Moreover, with nondegenerate F (), if R varies across pure-strategy steady states intermediation
activity does too, but not necessarily to the extreme extent of the degenerate case, where it is
either 7 = 1 or 7 = 0. Similarly, for real-time dynamics, cycles with nondegenerate F' () have
fluctuations in intermediation activity but not necessarily between 7 =0 and 7 = 1.
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so ng is high. That makes it easy for M to get k and rationalizes a low R. Now
suppose R is high, so M trades k£ to B with a low probability. Then the probability
M has k = 0 is low, which is bad for sellers, so ng is low. That makes it hard for M
to get k and rationalizes a high R. Moreover, market liquidity — i.e., the ease with
which agents can buy and sell k£ —is high (low) if R is low (high). Multiplicity means
liquidity is not pinned down by fundamentals, a recurring theme in monetary theory
(e.g., Kiyotaki and Wright 1989), but the intuition here is different. In monetary
economies, whether an agent accepts something as medium of exchange depends on
what others accept. Here, whether type M agents trade away k depends on n,, and
ns depends on whether type M trade away k, which is a different idea. In particular,
our result requires endogenous market composition, not true in monetary models.
Now consider a two-cycle oscillating between a liquid regime with low R and an
illiquid regime with high R, or (R*,n") and (n!, R') solving
R oS el B ) R
One solution is (RY, n*) = (0.9862,0.4504) and (R”,n") = (1.0103,0.4312). Hence,
we have real-time dynamics (not just multiple steady states) with excess volatility
in liquidity, trade volume, prices and quantities. Fig.9 shows the times series. In
the liquid regime: R is low, making M more inclined to trade with B; n is high,
because M and B traded less last period; and ng is low, because low R and high n

discourage entry by S. The illiquid regime has the opposite properties.
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Figure 9: Model 3, time series for a two-cycle

We do not claim that actual data are best explained by a two-cycle, but suggest
if such a simple model can deliver equilibria where endogenous variables vary over
time, as self-fulfilling prophecies, it lends credence to the notion that intermediated

asset markets in the real world might be prone to similar instability.'®
Model 4: Safety and Secrecy

An important role of banks is the issuance of liabilities that facilitate third-
party transactions. Indeed, for the general public, that is virtually their defining
characteristic: “banks are distinguished from other kinds of financial intermediaries
by the readily transferable or ‘spendable’ nature of their IOUs, which allows those
IOUs to serve as a means of exchange, that is, money... Commercial bank money
today consists mainly of deposit balances that can be transferred either by means

of paper orders known as checks or electronically using plastic ‘debit’ cards” (Selgin

18Prices are also shown in Fig.9 (averaged over m when B trades). The price B pays S is
constant over time, as it depends only on fundamentals, but the price M pays S or B pays M
moves with R. The spread can go either way, but here it moves against R. This is all broadly
consistent with the data discussed in Comerton-Forde et al. (2010), and other stylized facts (e.g.,
inventories are volatile than output). While this is obviously not a calibration, the finding that it
is qualitatively more consistent with observations may lend further credence to the story.

23



2018). We pursue this idea in a model with an explicit need for payment instruments,
building on the New Monetarist framework surveyed by Lagos et al.(2017) and
Rocheteau and Nosal (2017), where we introduce banks in two related ways.

In Model 4a, bank liabilities are safe relative to other assets in the sense that
they are less susceptible to theft or loss (similar to He et al. 2007; see also Sanches
and Williamson 2010). Traveler’s checks are a case in point but not the only one —
in general, it is obviously worse to have your cash lost or stolen than your checkbook
or debit card. Also, if merchandise turns out to be fraudulent or defective, which is
similar to theft, it is typically easier to stop payment if you use a check or credit card
than if you use cash.!” Model 4b builds on the idea that payment instruments orig-
inating with banks can be, as Dang et al. (2017) put it, informationally insensitive
when these institutions act as secret keepers; an earlier exposition of this is Gorton
and Pennachi (1990) while Andolfatto and Martin (2013), Andolfatto et al. (2014),
Loberto (2017), and Monnet and Quintin (2017) are versions that go deeper into
the microfoundations.?

While there are different approaches to modeling media of exchange, one based
on Lagos and Wright (2005) is convenient for both Models 4a and 4b. In that setup,
in each period of discrete time two markets convene sequentially: a decentralized
market, or DM, with frictions detailed below; and a frictionless centralized market,
or CM. There are two types of infinitely-lived agents, a measure 1 of buyers and
a measure n of sellers. Their roles differ in the DM, but they are similar in the
CM, where they all trade a numeraire consumption good x and labor ¢ for utility
U(x)—{, with U' > 0> U". They also trade assets in the CM, like the trees in the

standard Lucas (1978) model, giving off a dividend p > 0 in the CM in numeraire.

19Gafety was a critical feature of banks historically. Consider the British goldsmiths: “At first
[they] accepted deposits merely for safe keeping; but early in the 17th century their deposit receipts
were circulating in place of money” (Encyclopedia Britannica, quoted in He et al. 2005; emphasis
added). Also, “In the 17th century, notes, orders, and bills (collectively called demandable debt)
acted as media of exchange that spared the costs of moving, protecting and assaying specie” (Quinn
1997; emphasis added). Safety was also crucial for earlier bankers, including the Templars (Sanello
2003), who specialized in moving purchasing power over dangerous territory.

200ther models of bank liabilities circulating as media of exchange that are similar in spirit but
very different in detail include Cavalcanti and Wallace (19994,b) and Cavalcanti et al. (1999).
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All agents discount by 3 € (0, 1) between one CM and the next DM, but wlog they
do not discount between the DM and CM.

In the DM agents meet bilaterally, where sellers can provide a good ¢ (different
from x) that buyers want. Let o be the probability a buyer meets a seller, so that
a/n is the probability a seller meets a buyer. In any meeting, if a seller produces for
a buyer the former incurs cost ¢(gq) and the latter gets utility u (¢), where ¢ (0) =
u(0) =0, d,u >0 and ¢ >0 > u". Also, let ¢* satisfy «’ (¢*) = ¢ (¢*). Goods
¢ and x are nonstorable, so they cannot serve as commodity money. Credit is not
viable because there is limited commitment and DM trading is anonymous. Hence,
as is standard in these models, sellers only produce if they get assets in exchange.

Let the terms of trade be given by a generic mechanism, as in Gu and Wright
(2016), meaning this: for a buyer to get ¢, he must give the seller assets worth v (¢) in
CM numeraire, for some function with v (0) = 0 and v’ (¢) > 0. A simple example
is Kalai’s (1977) proportional bargaining solution, v (q¢) = fc(q) + (1 —8)u (q).
Generalized Nash is similar but the formula for v(g) is more complicated when
liquidity constraints are operative. For a fairly general class of mechanisms, Gu
and Wright (2016) show this: if a buyer has enough assets to make his liquidity
constraint slack, he gets the efficient ¢ = ¢* and pays p* = v(¢*); but if he has assets
worth p < p*, he gives them all to the seller and gets ¢ = v~ (p) < ¢*.

In Model 4a, assets can be held in forms that differ in safety and liquidity,
where safety is captured by the probability of being stolen (or lost), and liquidity is
captured by whether it can be used as means of payment in the DM. To maintain
stationarity, any assets that are stolen (or lost) return to the system next period,
say because thieves (or finders) bring them to the CM. Let a = (ay, az) be a buyer’s
portfolio: a; denotes assets held in a safe but illiquid form, say hidden in one’s
basement, meaning that it cannot be stolen (or lost) but also cannot be used in the
DM; and as denotes assets held in a liquid form, which means they are brought to
the DM, where can be used as payment instruments, but there is a probability § > 0

of being stolen (or lost).
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The ex dividend price of the asset in terms of numeraire is ¢/ independent of
whether it is held as a; or as. A buyer’s CM value function is W (A) where A =
(¢+p)3;a; is wealth. His DM value function is V' (a), which depends on his portfolio
and not just its value. A buyer’s CM problem is then

Wt (At) — Inax {U(fL‘t) - ét + /B‘/t(ét)} st T = At + ét - @Z)tzj‘d‘jﬂg

Tl 8t

where & = (a4, ao) is his updated portfolio, and the CM real wage is 1 assuming
that x is produced one-for-one with ¢. Given an interior solution, several standard
results are immediate: (i) x; = z* solves the FOC U’(z*) = 1; (ii) &; solves the
FOC’s f0Vi41/0a;, < 0, = 0 if a;, > 0, which is independent of a,, so all buyers
exit the CM with the same portfolio; and (iii) W} (A:) = 1, so W; (A;) is linear in
wealth. A seller’s CM problem (not shown) is similar, with a CM payoff again linear
in wealth.

A buyer’s value function is

Viyi(a) = (1-9) {04 [u(ge+1) — v (q1)] + WtH(AtJrl)} + Wit [(Yyy1 + p) ]

where A, is the wealth implied by &, with g1 solving v (Gra1) = (wt 1+ p) ay if
(V41 + p) G2 < v (q*), and v (g41) = v (¢*) otherwise. The buyer’s surplus in a DM
transaction is u (¢) — v (q), because of the result that W (-) is linear. Equilibrium
is described by the Euler equations, which come from inserting the derivatives of V'

into the FOC’s from the CM:

0 = ay [5 (¢t+1 + P) - Q/Jt} (32)
0 = g {8 (W1 +p) A=08)[1+aX(qs1)] — ¥}, (33)

where A (¢) = v/ (q) /v' (¢) — 1 > 0 is the liquidity premium on assets in the DM.

If we normalize the aggregate asset supply to 1, the dynamical system implied
by the model is described as follows. At any ¢, there are three possible regimes: (i)
as; = 0; (ii) 0 < a9y < 1; and (iii) @y, = 1. In regime (i), inserting a;, = 1 and

as; = 0 into (32) and (33), we get ¥, = B(¢,,; + p) and (1 —6) [1+ X (0)] < 1,
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with the latter equivalent to

a (0)

§>0= ——2
- 1+ aX(0)

(34)

Thus, agents bring no assets to the DM if the probability of theft is high.?! If (34)
holds, the DM shuts down, in which case the only possible equilibrium outcome has

¥, = ¥ Vt, where ¥ = Bp/ (1 — B) may be called the fundamental price of the
asset.??

Now assume 8§ < 0 , and consider regime (ii), where agents hold some but not
all their assets in liquid form. Inserting a;:,a42; > 0 into (32) and (33), we get

Y, =B (Yq +p) and (1 —8) [1 4+ @) (g41)] = 1, which means g;+1 = ¢ where

(35)

. 4]
ar(q) = -

One can show regime (ii) obtains iff ¢, + p > @y (¢y41 + p) = v () and § < 5.
Finally, consider regime (iii). Inserting a,; = 0 and do; = 1 into (32) and (33),

we get ¢, > 3 (¢t+1 + P) and
Y, =p (¢t+1 + P) (1=08) 1+ aX(gm)], (36)

where ;11 = v (0,4, + p) < ¢. This last condition is equivalent to 1, ; < ¢

v (§) — p. Hence if § < & the dynamic system is v, = f (%H) where:

_ [ B (=0l +arov (¥ +p)] ity <
ro={ Gt o>y 07

Equilibrium is a nonnegative and bounded path for ¢, = f (wt +1)-

Proposition 4 Steady state exists, is unique, and is described as follows. Define
5 €[0,0) by
aXov ' (" 4 p)

5 tr)
1+ alov 1 (¢" + p)

(38)

21With Kalai bargaining and the Inada condition u’ (0) /¢’ (0) = oo, this reduces to § = af/(1—
0+ af),sod=1if0 =1 and § < 1 otherwise

220ne might argue that (1 — 6)3 (¢ + p), and not 3 (¢ + p), is the fundamental price, since an
asset holder only gets the return when it is not stolen. A rebutal is that someone always gets the
payoff, even if it is the thief. To avoid this semantic issue one can simply interpret ¥ as notation

for Bp/ (1 = B).
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Then (i) § > & implies a1 = 1, a4 = 0 and ¢ = 7' ; (i) 6 € (3,0) implies a; > 0,
as >0 and ¥ =Y ; and (z’iz’)dggimpliesm:O, ds =1 and ¢ > YF.

Fig. 10 shows how steady state depends on 4. In regime (i) the DM is inactive
and 1 = 1", because assets are not safe enough to use as payment instruments. In
regime (ii) the DM is active at ¢ = ¢ > 0, but since some wealth is parked in illiquid
a1, we again have ¢ = %, with 9¢/06 < 0. Thus DM output goes down with §
because it reduces output per trade ¢, as well as the number of trades (1 — §) . In
regime (iii), which it maximizes “cash in the market” with a, = 1, we get ¢ > .

Here 0q/06 < 0 not because ay falls, but because v falls, with 0.

/

o
- ——

|
|
|
|
|
|
:
0 5

Figure 10: Model 4a, regimes of steady state

A steady state can either be on the linear or the nonlinear branch of f (-). In the
former case, 1) = % > {b and steady state is the only equilibrium (any other path
for 1, is unbounded). In the latter case, ¥* < ¢ < 1, and we potentially have cyclic,
chaotic or stochastic equilibria where 1, oscillates around ). As usual, this occurs
when f’ ({p) < —1. So the economy may have asset prices above their fundamental
value, and these prices may exhibit excess volatility, even without banks, as is true

in many monetary models.
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wt+1

Figure 11: Model 4a, dynamic equilibrium

Now introduce banks that take assets as deposits and issue receipts, claims on
these deposits. Let az denote assets on deposit, and assume they are safer than as
but still liquid — i.e., as described in the above quotation from Selgin (2018), bank
liabilities (the receipts) are spendable.?> However, deposits may entail a lower yield
than the original assets, since banks may have operating costs and depositors may
be willing to sacrifice return for safety. If ¢ is the interest rate on deposits then bank
profit is

I (as) = as (p— 1) — k (a) (39)

where k (a3) is the cost of managing deposits, with &', k" > 0 = k(0). Maximization
of I equates the spread p — ¢ to marginal cost &’ (a3).

Now a; > 0 Vj is possible because there are three asset characteristics — namely,
liquidity, safety and rate of return. However, to begin, suppose deposits are perfectly
liquid and safe, and set k(a3) = 0 so that © = p (we return to the general case

below). Then a3 strictly dominates as, and the economy looks like one without

23We can make deposits less than perfectly liquid — i.e., some sellers do not accept receipts
or accept them only up to a limit — using private information as in Lester et al. (2012) or Li et
al. (2012). We can also make deposits less than perfectly safe if bankers might abscond with them,
get robbed or otherwise fail, but it is reasonable to say they are relatively safe.
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banking where § = 0. This is shown in Fig. 11, where f; and f, are the dynamical
systems with and without banking. Adding banks shifts up in the nonlinear branch
of f(-), which increases 271 and 1), since agents can now keep assets in a safe place
and still use them for DM transactions.

Banking increases DM output because it increases the size and number of trades.
What does it do for volatility? Starting without banks, suppose steady state is on
the linear branch of f(-), so there is a unique equilibrium 1, = * Vt. Then
introducing banks can shift f (-) up by enough that the new steady state is on the
nonlinear branch. Thus, banking can make possible cyclic, chaotic and stochastic
equilibria that were impossible without it. For some parameters such outcomes are
also possible without banking, but if the economy has a unique equilibrium with
banking the same is true without banking.

Fig. 11 is drawn for the following specification:

Example 7: Let k(a3) =0, c¢(q) = q,

A

ulg) =1 [lg+e)"7 =],

and use bargaining with 0 = 1. Also set A = 0.15, ¢ = 3.1, ¢ = 0.16, p = 0.033,
£ =0.8333, 6 =0.85 and o = 1.

Without banks there is a unique equilibrium, the steady state ¢ = ¢* = 0.1650.
With banks there is a steady state 1) = 0.3183 > ¥ plus a two-cycle where 1 L =
0.3193 and v 5 = 0.3502.

While this example makes our main point, it is worth asking what else the
model can do. We now show it generates something realistic but uncommon in
economic theory: the concurrent circulation of assets and bank liabilities as payment
instruments. So that as does not strictly dominate ao, consider a more general cost
function k (a3). Then bank’s FOC defines a supply curve that is increasing in ¢,
which is endogenous in equilibrium but taken as given by individuals. Equilibrium

is characterized by (32)-(33) with

v (Gry1) = (%H + P) as + [¢t+1 +e (dS)] as,
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since DM purchases now use ay and az. The demand for a3 satisfies

0= as, {5 (¢t+1 + Lt) [1 + oaA (qz{,+1) +(1—9) A (%Hﬂ - wt} (40)

where v (q,,1) = [t,41 + ¢ (a3)] a3 and ¢, is the DM purchase when as is stolen.
Consider the following example:

Example 8: Let A =2.5,0=2.5,e=0.001 p=0.04, 5=0.8, 9 =0.01, a =1,
and k (a3z) = 0.03as.

There is a unique steady state in which ¢ = 1.3125, & = (0,0,1) and ¢ = 0.01.
There is also a two-cycle with ¢, = 1.2128, &, = (0,0,1), ¥ = 1.4760 and ay =
(0.0384,0.2293,0.7323). In the L state, ¢ is low, all assets are deposited, and only
bank liabilities are used in the DM; in the H state, v is high, assets are held in all
three forms, with both ay and as used in the DM. Fig. 12 shows the price v, deposits

asz, their value (¢ + ¢) az, and the surplus u (¢) — ¢ (q) over the cycle.

= <’
1 2 3 4 1 2 3 4
t t
) T
2 g
3 3
~ =]
1 2 3 4 1 2 3 4

Figure 12: Model 4a, time series for a two-cycle

Now consider Model 4b, based on secrecy rather than safety. First, following in
Hu and Rocheteau (2015) or Lagos and Zhang (2019), assume Lucas trees die (dis-
appear) with probability § at the beginning of each CM.?* To maintain stationarity,

24For an individual, having one’s asset disappear is similar to having it stolen, so Models 4a and
4b are similar, although the details differ. Moreover, they share the alternating CM-DM structure,
the use of a generic trading mechanism v (¢), and other components, which is why we treat Models
4a and 4b as special cases of the same general environment.
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dead trees are replaced by new ones, distributed across agents as lump sum transfers
from nature. Also, this is an aggregate shock (all or no assets survive each period).
Moreover, information about the shock in the next CM is revealed in the current
DM, before agents trade, which is a hindrance to having assets serve as media of
exchange. This specification is extreme, in that the asset value drops to 0 after a
shock; all we really need, however, is that it goes down.

The CM problem is

Wi (ar) = max {U(ze) — b + BVipa(an)} st xp = (Yy + plag + b — Yy + T

xt,Le,ae

where T denotes transfers. Here the asset is the only DM means of payment, and

it is only usable when it is revealed that it will survive to the next CM. Hence,
Viga(ar) = (1= o) {afu(gesr) = v ()] + Wega (@)} + Wi (0)

where, as in Model 4a, v (gi41) = (Vg + p) @ if (Vg + p) @ < v (¢*) and v (g41) =
v (q*) otherwise. Again, we get ¢, = fo (@bt +1)7 where the subscript 0 indicates there

are no banks for now, and

fo)=B81=08) (W +p)[L+arov™ (¥ +p)]. (41)

Now introduce banks that take assets on deposit and issue receipts. These de-
posits are not insured — they are claims to the asset, and if the asset dies the claim
is worthless. By design, the role of banks in this formulation is not to provide insur-
ance, but to capture secrecy as follows: while an agent holding an asset can see if it
will die in the next CM, once he deposits it in a bank he cannot, and although the
banker holding the asset can see it, he may or may not inform people. This is the
idea in the literature, discussed above, where some assets are more informationally
insensitive than others and banks’ role as secret keepers. Agents like to use bank
liabilities as DM payment instruments, rather than the original assets, since the
former trade at their expected value rather than their realized value. This bank

money provides a steadier stream of liquidity.
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With banks, the DM value function is

Vivi(ar) = afu(ge1) — v (ga)] + (1 = 0)Wipa (ar) + Wiy (0)

This leads to ¥, = f; (wtﬂ), where

@) =p1=0)+p){l+arov [(1=0)(+p)]}. (42)

As X (+) is decreasing, f; lies above fjy on the nonlinear branch, and hence f; reaches
a higher steady state. It can be shown that the liquidity provided by deposits in
steady state is lower than that provided by the asset when the asset does not die,
but of course is higher when it dies. On net, banking can improve welfare, but it
can also engender instability.
This is shown in Fig.13 for the following parameterization:

Example 9 Same as Example 7 except A = 0.5, 0 = 3.5, ¢ = 0.15, p = 0.5,
£5=0.9 and 6 = 0.5.

Without banking, the unique equilibrium is a steady state where 1) = 0.4091, and
q = ¢ = 0.6703 if the asset survives while ¢ = 0 otherwise. With banking, there
is a steady state where ¢ = 0.7187 and ¢ = 0.6093, and welfare is higher, but
there is also a two-cycle where 1; = 0.6081 and 1, = 0.8514. The time series
(not shown) in this case is simple since all variables move with 1. Thus, banking
eliminates fundamental cycles induced by information about realized asset values,

but introduces volatility as a self-fulfilling prophecy.
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¢t+1

Figure 13: Model 4b, dynamic equilibrium

The first part of Proposition 5 below says banks may engender volatility. The
second part says they cannot eliminate volatility due to self-fulfilling prophecies,
since if there is a unique equilibrium v, = Y ¥Vt with banking, there is also a

unique equilibrium with ¢, = ¢* V¢ without it.

Proposition 5 When the steady state 10 = ¥ is the unique equilibrium without
banking, introducing banks can introduce nonstationary equilibria. When the steady
state 1 = Y is the unique equilibrium with banking, steady state is the unique

equilibrium without banking.

Models 4a and 4b, based on safety and secrecy, respectively, deliver similar re-
sults and can be understood by similar intuition. First, in the presence of liquidity
considerations, the system 1, = f (wt +1) has two terms: one reflects a store-of-value
component making price today monotone increasing in the price tomorrow; the
other reflects a medium-of-exchange component making price today generally non-
monotone in the price tomorrow. If the second term is decreasing and dominates the
first, f (171) < —1 is possible, and hence endogenous dynamics can occur. In Model
4a, without banks we have fy (¢), and with banks we have f; (¢) = fo (¢)/(1 = 6)

on the nonlinear branch. This explains how we can get f} (¢) > —1 without banks
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and f] () < —1 with banks at any given v. In addition, steady state moves from
b, without banking to 1, with banking, which can also make f] (@) < —1 more
likely.

In Model 4a banks make the asset better as a store of value and as a medium
of exchange by protecting from theft. In Model 4b banks do not make the asset
better as a store of value, because there is no way to avoid the loss if the tree dies,
but they make it a better medium of exchange if the bank keeps information secret.
Hence, in Model 4b agents unambiguously put more weight on the nonmonotone
medium-of-exchange component, so it is more likely that f] (1)) < —1. In general,
although the details are different in the two versions, in both banking can engender

volatility.
Conclusion

This paper explored the idea that financial intermediaries are inherently unsta-
ble. The approach involved building formal models of these institutions, and then
asking if they make it more likely that there will be multiple equilibria and /or excess
volatility. We showed that they do, in several theoretical environments designed to
capture various facets of intermediation. Models 1 and 2 involved trust, as seems
natural in a theory of banking, but they differed in the basic reason for its emer-
gence: one concerned insurance; the other featured fixed costs of investing. Model
3 was built to capture not banks but middlemen in OTC markets. Models 4a and
4b concerned the use of bank liabilities as payment instruments. The analysis used
tools from mechanism design, search, bargaining, contract and monetary theory.
While many of the ingredients appear in previous studies, the ways in which we
combine and apply them are novel and generate new insights.

Although the specification differ economically and mathematically they have
similar implications for multiplicity and volatility. This lends support to the notion
that financial intermediation engenders instability, because it appears to transcend

technical modeling details. However, we again emphasize this does not make it a
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% We used examples a

bad idea, since intermediation may well improve welfare.
lot because the claim is only that financial intermediation may lead to instability,
not that it must; future work may ask what happens at realistically calibrated
parameters. To reiterate our other claim, it is not that we think actual data are best
explained by cycles or sunspots, but that when rudimentary models have equilibria
where liquidity, prices, quantities and welfare vary as self-fulfilling prophecies, it
seems more likely that this can happen in the real world.

One can naturally ask what the four types of models presented above have in
common and why they are all in one paper. What they have in common is this:
Building models of financial intermediation requires environments with explicit fric-
tions, including limited commitment, spatial or temporal separation, and imperfect
information or communication. This can give rise to an endogenous role for in-
termediation, like it can give rise a role for money and other institutions whose
purpose is ameliorating said frictions. At the same time, frictions mean that there
can be multiple Pareto-ranked equilibria and belief-based dynamics. This is related
to what Shell (1992) calls the Philadelphia Pholk Theorem: in all models where
equilibria are not efficient one can find multiple equilibria or excess volatility, where
he was thinking of sunspots, but the reasoning also applies to cycles. It is hard to
prove this, in general, because it concerns all models, so corroboration consists of
showing it works in a series of environments. Our conclusion is that the frictions
actuating endogenous intermediation also lead to multiplicity and volatility. The
reason to have four models is to show the idea is robust — it applies in various en-
vironments, with different frictions, meant to capture different features of financial

intermediation in the real world.

ZPRajan (2005) argues that volatility, which he takes to be self-evidently bad, has emerged
from recent financial innovation. This is consistent with our theoretical findings, but we tend
to agree with Summers’ comment: Financial innovations are like improvements in transportation
technology, which have an overwhelmingly positive impact on welfare even if they increase the
possibility of, say, plane crashes. Clearly, financial markets, like the airline industry, may need
some regulation, but too much can be counterproductive (e.g., see Lacker 2015). In future work
we plan to explore optimal policy intervention.
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Appendix A: Proofs of Nonobvious Results

Proposition 1: If ¢ < 0 then (12) reduces to ¢, ; = f¢, and the only equilibrium
is the steady state with ¢ = 0. If ¢ > 0 then f (0) > 0 and f(¢) = 8¢ < ¢ implies
¢ € (0, ¢) exists. To see it is unique, first solve (12) for ¢ = Suv (bR) /(1 — ) and
substitute it into (10) to get Ad = (1 — 8+ pu)v (bR) /(1 — ). This implies d is
increasing in b. But (11) implies d is decreasing in b, so if they have a solution (b, d)

it is unique. W

Proposition 3: First, for uniqueness, note that when m = 7 the equations for the

R-curve and n-curve are defined by

r+(5+a9m8 R_p_anbembT(W—R)+a(nb+nm)9mSR _ 0 (43)
1-9 N
5n+n(1—5)o‘”bT—(nm—n)u—é)a(u”b;”m) — 0 (44)

where

N = anyd o™ + a (N, — n) Qst'

Ks
In the region where R > 7, where 7 = 0 combine (43) and (44) to eliminate N,

0,ns0M

(r+5+ n>R=/)(1—5) (45)

N

This implies
OR OrmsOTm

= 5 <
on (N —n)" (r+9) + (nym — n) Opson
Thus we transform the system (43)-(44) to (45)-(44). As (45) is downward sloping

and (44) is upward sloping, there exists at most one steady state with R > 7.

0.

In the region where R < 7, where 7 = 1, combine (43) and (44) to get

r 4+ ) anmb (77' — R) + (TLb + nm) HmSR
- —n)(1—68)a—ndl.
(1 —5 + a@ms) R=p+ (L= 0) 1 (s 110 — 1) (N — 1) (1 = 6) a — nd]

This implies

8_R _ plmp (7 — R) + (np + 1) O R0 (1 + 1)) + (1 — 9) amy <0  (46)
an N r+ 4] + (Qms + nbemb> (1 - 5) O[/N Nm (nb + Ny — n)2

Again, since (46) is downward and (44) upward sloping, there is at most one steady
state with R < 7. Similarly, when R = 7 and 7 € (0,1), the n-curve is flat and

R-curve is upward sloping. Hence, there again is at most one steady state.
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For existence, first, it is easily verified that the R- and m-curve are upward
sloping. At n = 0 the R-curve implies R > 0 and the n-curve implies n >
0. At R = oo the R-curve implies n = n,, and the n-curve implies n = n =
ang, (1—=96)/[0+ (1 —9)a] < n,,. Hence the curves cross at least once, and gener-
ically an odd number of times. Since we already established that there cannot be
multiple steady states in the same regime , if there is a steady state at R = 7, there
must exist two other steady states, one with R < 7 and one with R > 7. Rou-
tine calculation implies OR/Jp > 0, and so there exist p, p > 0 with the properties
specified in Proposition 3. W

Appendix B: Sunspot Equilibria

A dynamical system allows for a two-state sunspot equilibrium solves

Gt = Cof (Dss) + (1= C0) f(P_ss) (47)

where s = A, B denotes two states in the sunspot equilibrium, ¢, € (0,1) is the
probability of staying in the same state, and f is the dynamical system in the
deterministic case. We seek a pair of probabilities (¢ 4, () € (0,1)” satisfying (47)
in stationary equilibrium.

To proceed, rewrite (47) as

f(d5) = ba ¢ — [ (da)
[ (o) = f(d4) f(¢p) = f(da)

Consider wlog ¢z > ¢ 4. If f is decreasing on (¢4, ¢5), the denominator is negative.
Then (4, (5 € (0,1) iff f(¢y) > ¢ > d4 > f(¢p), which implies that f crosses
the 45 degree line from above and [f (¢4) — f (¢p)] / (¢4 — ¢5) < —1. Therefore, in
Model 1 where f is decreasing around the steady state, there exist sunspot equilibria
if f(¢) <—1.

Similarly, if f is increasing on (¢4, ¢p), the denominator is positive. Then
CaCp € (0,1) iff f(dg) > dp > ¢4 > f(P4), which implies f crosses the 45°

line from below on [¢,, ¢z]. Therefore, in Model 2 where f is increasing, there

Ca= and (5 =

exist sunspot equilibria around a stable steady state ¢, for any ¢, € (0,¢,) and
¢B € (¢17 ¢2)
Appendix C: Bargaining in Model 2

There are two agents on each island, one who lives for one period and one who lives

forever, so the former should be the depositor and the latter the banker. Assume
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the cost k is too high for them to invest individually. If the banker’s bargaining

power is 6, the generalized Nash problem is

W () = gua [U(X) ~ C(D)u (2) — ()] (49
st X+x=R(D+d)—k (49)
u(x)—c(d) >0 (50)

xy < ¢, (51)

The last constraint is from the banker’s incentive condition SV, ; > Az; + (1 —
1) BViy1 rewritten using ¢, = SuVii1/A. Notice W’ (¢) > 0 if (51) binds, and there
is a cutoff ¢ above which banking is viable and below which it is not.

Denote the solution ignoring (50) and (51) by (X*, z*, D*,d*). Further, consider
the case u (z*) > ¢ (d*) and let ¢" = x*. Substituting (49) into the objective function
and taking FOC’s, we get

D : U(X)R-C'(D)=0
d : U (X)Rlu(z) —c(d)] — (1 = 0) ' (d) [U(X) = C(D)] —mc' (d) =0
oo U (X)[u(z) —c(d)] + (1= 0)u (z) [U(X) = C(D)] +mu' (x) —ny =0

where 7, and 7, are multipliers. From this one can see the banker’s surplus may

decrease with ¢ at least close to ¢™:

B (1-0)U'c"(U-C)(R2U"~C")
— (C"=R2UM)[C"I+(1-0)"(U—C)|—6R2U"C" (u—c)

AU (X)~C(D)]
¢ —

The banker’s value function is V; = U (X;) — C(Dy) + fViy1, and using ¢, =
BuVii1/\ we have

< 0.

Bu

gbtfl = T[U (Xt) - C(Dt)] + Bﬁbt- (52)
Now (52) can be written as
6@ if ¢, < ¢
BV 0 X (6,) ~ CoD (@) + B, f6< <o

P = 6\
,u

Fig. AC shows the dynamical system for the following parameterization:
Example AC: Let U (z) = u(x) = Az and C (d) = ¢(d) = Bd"/~, where A =1,
B=05,vy=5R=2k=15,0=0.01, A\=0.01, u=1 and 8 = 0.35.

D) + B, if ¢, > ¢
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There are three steady states, ¢ = 0 and ¢, > ¢; > 0, with f crossing the 45° line
from below at ¢, and from above at ¢,. Hence there are sunspot equilibria around
¢, fluctuating between any ¢, € (0,¢,) and ¢z € (¢, Py), similar to the baseline
version of Model 2, and since f’ (¢,) < —1 there is a two-cycle with periodic points
¢, and ¢, plus sunspot equilibria for any ¢, € (¢, d,) and ¢z € (¢, @f7), similar
to Model 1.

Py

Figure AC: Nash bargaining

Appendix D: Entry by Type M in Model 3

Consider entry by M instead of S. The equations (23)-(27) are the same but now
ns is fixed while n,,,; is endogenous. Also V,; = k; is replaced by V; = ky,. Then

(24) yields N; in terms of Ry,

CVnse'mth
Ny = ————.
A= B (53)

From (53), N; depends only on R;, while with entry by S, it depends on R; and n;.
Substituting (53) into (26), after some algebra we get R;_1 = G (R;), where

G(R)zﬁ(l—é){p+R+ u _2)9:’:?9”“’/00[1—F(7r)]dw—(1—6)nm}.

R

From this, R; ; depends only on R;, while in the version with entry by S, it depends
on R; and n;.

Hence we now get a univariate system R, ; = G (R;), which determines the
path for Ry, after which IV, follows from (53), n; from (27), etc. Given a fixed point
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N = ansemth/ (]- - ﬁ) Km
o Oénsgmth _ -
Ny = —<1 — 5) o Ng ny
ns (1 =06) [anslps R — (ny +ns) (1 = B) K

nsOmsR+ (1 —06) [np7 (R) + ns] (1 — B) ki
To guarantee the fixed point is a steady state we must check n,,,n > 0, both of
which hold iff R > R = (ns + np) (1 — 8) km/ansb,s (we also need n < n,, but that
never binds). Hence, a solution to R = G (R) > R is a steady state with type M

n

active; otherwise, there is no intermediation.

G(R)

R

0
Figure AD: Model 3, cycles with entry by M

One can check G (0) = oo, G'(R) < 1 and G" (R) > 0. Also, VR > max (7), G
is linear with slope 3 (1 — §). This is shown in the left panel of Fig. AD, from which
it is clear that there exists a unique fixed point, say R. In any case, we can have
R > max () on the linear part of G (R) or R < max (), on the nonlinear part of
G (R). If G’(R) < —1 then R is locally stable, and there exist cycles and sunspots.
There is a threshold p, such that G'(R) < —1 iff p < p,. We do not know if p, > 0
or p; < 0, in general, but all our examples gave p; < 0. Still we have to verify
R > R, as discussed above. Is G’ (R) < —1 and R < R possible? Yes, as we now
show by way of example.

Example AD: Consider a =1, 6 =0.01, 5 =0.99, n, =ns =1, 0, = 0,,, = 0.5,
km = 0.1, p = —0.1, and use the F () in (30), with 7y = 4.95, m; = 0.05, o = 5.05,
w3 = 0.95 and w4 = 10.
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A

This is the example used in Fig. AD, where it can be easily checked that G'(R) <
—1 and R < R. Hence this admits a two-cycle. Note that p < 0 in this example. If
we lower p a little more, we can get higher-order cycles and chaotic dynamics. This
is shown in the right panel of Fig. AD, where we plot G* (R) and see that there exist
fixed points other than I%, namely a pair of three cycles. Hence, we can explicitly
construct higher order cycles. Finally, one more result is that p < 0 implies M and
B must trade for some 7w, Pr(R < ) > 0, if M is in the market — just like in the

other version, a buy-and-hold-forever strategy is never a good idea at p < 0.
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