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1 Introduction

During the past two decades, many countries have moved their monetary policy

regime to inflation targeting.1 As described by Svensson (2000) inflation targeting

is characterized by (1) an explicit quantitative inflation target, either an interval or

point target, (2) an operating procedure that uses a conditional inflation forecast

as an intermediate target variable, and (3) a high degree of transparency and ac-

countability. Furthermore, as argued in Svensson (1999), inflation targeting can be

modeled as minimization of a specific loss function of the central bank. The operating

procedure ensures that the first-order conditions of this minimization problem are

approximately fulfilled. The role of transparency in this case is to what extent outside

observers can verify if those conditions are fulfilled. A high degree of transparency

therefore increases the incentives for the central bank to minimize the assigned loss

function. This procedure results in an endogenous reaction function, that is the mon-

etary policy instrument is expressed as function of all relevant information.

It has become a standard in empirical macroeconomics to use the short-term interest

rate as the policy instrument and model the reaction function in the spirit of Taylor

(1993). In the original version of the so called Taylor-rule, the short-term interest

rate depends solely on current inflation and the output gap. In general, however,

the reaction function will depend on much more information, that is in principle, it

will depend on anything that has informational content for the central bank’s condi-

tional inflation forecast. In the case of open economies, it is therefore natural to ask

whether variables such as the exchange rate or foreign interest rates should also be

taken into account when formulating monetary policy.

In recent years, there has been extensive research on this question, namely how mon-

etary policy should be best conducted in open economies that face movements in the

nominal and real exchange rates. This issue has become particularly interesting in

the aftermath of the breakdown of many fixed exchange rate regimes in the 1990’s.2

As Taylor (2001, p.267) puts it: “An important and still unsettled issue for monetary

policy in open economies is how much of an interest-rate reaction there should be

to the exchange rate in a monetary regime of a flexible exchange rate, an inflation

1Among them are Australia, Canada, Finland, New Zealand, Sweden and the UK. Switzerland consti-
tutes a special case in that the Swiss National Bank does not consider itself an inflation targeter. Their
main argument is that they do not commit to reach an inflation target within a specific horizon. For the
purpose of this paper however, the differences between Swiss monetary policy implementation and inflation
targeting are of definitional nature.

2For a comprehensive review of the literature on fixed exchange rate regimes see Garber and Svensson
(1995).
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target, and a monetary-policy rule.” An early contribution on this debate was made

by Obstfeld and Rogoff (1995). They propose a “rule of thumb” calling for a relaxing

of monetary policy following a substantial appreciation of the real exchange rate.

Since an appreciation in real terms makes foreign goods relatively cheaper compared

to domestic goods, domestic aggregate demand is contracted through a reduction in

net exports. As a consequence, interest rates should be lowered in order to mitigate

the contractionary effects on domestic aggregate demand. Although intuitive, this

rule of thumb remains speculative as it relies to some extent on partial equilibrium

reasoning.

To gain meaningful insights on this issue, it is of interest to answer the question within

the framework of a general equilibrium model. Several theoretical studies have done

so. The approach termed as “new normative macroeconomic research” by Taylor

(2001) has been used overwhelmingly to assess this issue. Roughly speaking, this

means that the researcher builds a macroeconomic model including a monetary pol-

icy rule. The model is then solved using one of the numerous numerical algorithms3

and the properties of the variables examined. Based on a loss-function, statements

about the optimal policy rule can be made. The general finding is that including

the exchange rate to the policy rule does not significantly improve, and sometimes

even worsens, macroeconomic performance. Ball (1999) studies a simple small open

economy model with sticky prices. He finds that the optimal policy parameters for

the exchange rate are non-zero and quite large in size. However, macroeconomic

performance measured by the volatility of inflation is only improved very modestly

compared to a policy rule excluding the exchange rate. Using a different model

with forward looking agents and more explicit microfoundations, Svensson (2000)

performs a similar exercise. He also finds quite sizable optimal parameter values for

the exchange rate in the policy rule. His simulations show that the central bank

can indeed lower the volatility of inflation when following this rule. However, this

comes at the expense of output variability because the variance of output increases.

Another study of this class of policy rules is carried out by Taylor (1999). Using a

seven-country model with France, Germany, and Italy joined into a single currency

union representing the European Monetary Union and with Canada, Japan, the UK,

and the US conducting their own monetary policy, he simulates a policy rule that

includes a reaction to the exchange rate for the European Central Bank. Compared

to a simple rule excluding exchange rate, he finds that the exchange rate reaction

leads to a better performance for some countries in Europe, but to a poorer perfor-

3Among them are e.g. King and Watson (1998), Uhlig (1998), Klein (2000), or Sims (2002), all building
on the principle idea of Blanchard and Kahn (1980).
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mance for others. In summary, the above mentioned papers claim that the addition

of the exchange rate to a standard Taylor-rule may worsen, or at best, improves only

insignificantly the macroeconomic performance. Collard and Dellas (2002) even find

evidence that including the exchange rate can have substantial negative effects on

macroeconomic performance and welfare.

Most of this literature is based on calibrated dynamic stochastic general equilibrium

(DSGE) models. That is, formal econometric methods are not invoked. Taking a

first step towards filling this gap, Lubik and Schorfheide (2007) estimate a small scale

DSGE model of a small open economy using a Bayesian approach. They contrast this

full information system equation method to a single equation instrumental variables

estimation, emphasizing the advantages of the former. The main goal is to investi-

gate whether central banks in the UK, Canada, New Zealand and Australia actually

target exchange rates. They find that the Bank of Canada and the Bank of Eng-

land do, whereas there is no evidence for a reaction in New Zealand and Australia.

The question of optimal policy is not adressed in the paper. Justiniano and Preston

(2008) estimate a more elaborated small open economy DSGE model using data for

Canada, Australia, and New Zealand. They evaluate optimal policy by minimizing a

weighted objective of output and inflation variability over a set of generalized Taylor

rules. They find that the optimal coefficient on the exchange rate is zero.

The aim of our paper is twofold. On the one hand, we follow Lubik and Schorfheide

(2007) by empirically assessing whether the Swiss National Bank targets the nominal

exchange rate in its policy rule. On the other hand, we address the question whether

it is optimal for the central bank to react to movements in the nominal exchange rate

by performing some policy experiments similar to those of Justiniano and Preston

(2008). Methodically, we extend the analysis by employing a method that is capable

of taking possible misspecification of the underlying theoretical model into account.4

The method is also based on full information, Bayesian techniques. In a first step we

therefore solve a medium scale small open economy DSGE model. Then, when taking

the model to the data we use the approach proposed by DelNegro and Schorfheide

(2004), which can roughly be described as confronting the DSGE model with a more

general statistical model, a vector autoregressive model (VAR). The DSGE model is

interpreted as prior information about parameter combinations in the unrestricted

VAR. This prior information is augmented with information contained in the data,

4Lees, Matheson, and Smith (2007) also use this method to re-estimate the model of Lubik and
Schorfheide (2007). They do investigate the question of optimal policy. However, they do not test whether
the coefficients on exchange rates are positive. Furthermore, their technical implementation seems to be
based on the model without taking misspecification into account.
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that is, with the likelihood of the VAR. The method allows to express confidence in

the exact restrictions of the DSGE model by increasing the tightness of the prior.

The resulting estimated model, the DSGE-VAR, is a precise description of the data.

Most importantly, depending on the tightness of the prior, it partly has a structural

interpretation. Intuitively, when doing a policy experiment, the structural DSGE

model predictions are ‘corrected’ by a non-structural component, which is policy in-

variant by assumption. The less confidence the researcher has in his DSGE model,

the more weight is given to this statistical, only data-based correction.

We find that the Swiss National Bank did target the exchange rate. The posterior

odds ratio overwhelmingly favors a model with the exchange rate included in the

Taylor rule. Moreover, our optimal policy exercises shows that a non-zero reaction

of the policy instrument to the nominal exchange rate lowers volatility of output and

inflation. This is at odds with the findings of Justiniano and Preston (2008).

The remainder of the paper is organized as follows. In section 2 we present the

theoretical model. Section 3 describes the empirical method and section 4 the im-

plementation. Results are presented in section 5. Finally, section 6 concludes.
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2 The DSGE model

The theoretical model is based on Monacelli (2005) and follows closely the speci-

fications introduced by Justiniano and Preston (2008). The model consists of two

countries, one being the small open economy and the other the rest of the world. The

small open economy is populated by an infinitely-lived, representative household that

consumes, supplies labor, and invests in either domestic or foreign one-period bonds.

The interest rate on foreign bonds is subject to a risk-premium. On the production

side of the economy, there is a sector of a continuum of monopolistically competitive

firms producing a variety of domestic goods and selling them both domestically and

abroad. There is also a monopolistically competitive retail sector in which a contin-

uum of retailers import differentiated products from the rest of the world and sell

them on the domestic market. Both sectors are assumed to be subject to a staggered

price setting problem à la Calvo. As a result of this setup, imports are subject to lo-

cal currency pricing, i.e. the law-of-one price is violated in the short-run. There is in

principle another production sector in the economy: the final goods sector. However,

it will not be modeled explicitly because it can be thought of as a perfectly competi-

tive firm making zero profit that buys domestic and foreign varieties and turns them

into a final consumption good that is sold to the household. The monetary policy

instrument is the short-term interest rate, so we assume a generalized Taylor-type

policy rule. The rest of the world is large compared to the small open economy.

Therefore, although there is trade between the two countries, the imported and ex-

ported quantities are negligible relative to total foreign output. As a consequence,

all foreign variables are taken as exogenous by the domestic economy.5 Moreover we

assume that foreign households are restricted from holding domestic bonds. In what

follows, we briefly characterize the decision problems of each sector for the small

open economy. Then we describe how the rest of the world is modeled. Finally, we

summarize the linearized model economies. For the details of the derivations please

consult Appendix B.

2.1 Domestic Household

The household problem is standard. The representative agent maximizes lifetime

utility, subject to a budget constraint. She consumes, invests, and supplies labor to

5There is a subtlety to this point: technically, the model is a semi-small open economy model as the
domestic producers have some market power. We circumvent this issue by assuming that the law of one
price holds for those products.
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the domestic firms. The utility function is specified as follows

E0

∞∑

t=0

βt ε̃g,t

[
(Ct −Ht)1−σ

1− σ
− N1+ϕ

t

1 + ϕ

]

where ε̃g,t is a preference shock and Ht = hCt−1 is a habit formation term that is

taken as exogenous by the household. Aggregate consumption is given by

Ct =
[
(1− α)

1
η C

η−1
η

H,t + α
1
η C

η−1
η

F,t

] η
η−1

(1)

where CH,t and CF,t are the bundles of domestically produced and imported goods,

respectively.6 They are themselves aggregates of the different varieties. The elasticity

of substitution between domestic and foreign goods is given by η and α is the weight

of foreign goods relative to total consumption. In other words, α is a measure for

trade openness. Let Dt denote bonds denominated in domestic currency and Bt

bonds denominated in foreign currency. Then, the period budget constraint is given

by

PtCt + Dt + ẽtBt = Dt−1(1 + it−1) + ẽtBt−1(1 + i∗t−1)φt

+ WtNt + ΠH,t + ΠF,t + Tt

(2)

where ẽt denotes the nominal exchange rate7, Tt is a lump-sum transfer from the

government, and ΠH,t and ΠF,t are profits from the domestic firms and retailers,

respectively. The domestic household must pay a risk-premium8 in order to obtain

funds from abroad. We follow Benigno (2001) and Schmitt-Grohé and Uribe (2003)

by assuming that the gross premium φt is a function of aggregate net foreign debt

Bt−1 and a random shock εs,t. It proves convenient to express the risk premium

in terms of the real quantity of net foreign debt denominated in domestic currency

units as a fraction of steady state output. Formally, we let At ≡ ẽtBt/(Ȳ Pt) and

φt+1 = f(At, εs,t) with f1(·) > 0, where εs,t is a risk-premium shock.

The household’s optimization problem requires that the expenditures for domestic

6The aggregator in (1) can be interpreted as an Armington-production function of the representative
final goods firm. As described above, we do not explicitly model this sector because it can be easily
incorporated into the household problem.

7In our notation, ẽt is the domestic price of foreign currency.
8The risk-premium is introduced mainly for technical reasons. One the one hand, this constitutes a

convenient way to avoid the unit-root problem for consumption characterizing many small open economy
models (see Schmitt-Grohé and Uribe, 2003, for more Details). On the other hand, it allows us to introduce
an economically interpretable shock that we need for the estimation of the model.
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and foreign goods are cost-minimizing for any level of aggregate consumption. This

implies the following demand functions for domestic and foreign goods

CH,t = (1− α)
(

PH,t

Pt

)−η

Ct, CF,t = α

(
PF,t

Pt

)−η

Ct (3)

together with the theoretically correct consumer-price index

Pt = [(1− α)P 1−η
H,t + αP 1−η

F,t ]
1

1−η (4)

where PH,t and PF,t are the prices indices for the domestic and foreign consumption

bundles. Given the demand functions (3), the household maximizes its lifetime utility

subject to the budget constraint (2) by choosing optimally how much to consume,

work, and invest. This yields the following set of optimality conditions:

(Ct − hCt−1)σNϕ
t =

Wt

Pt
(5)

λt = βEt

[
λt+1(1 + it)

Pt

Pt+1

]
(6)

0 = Et

[
λt+1

Pt+1

(
(1 + it)− (1 + i∗t )

ẽt+1

ẽt
φt+1

)]
(7)

with λt = ε̃g,t(Ct − hCt−1)−σ being the marginal utility of consumption. Equation

(5) describes the optimal labor supply schedule, equation (6) is the standard Euler

equation, and equation (7) is an arbitrage condition restricting the relative move-

ments of domestic and foreign interest rates and changes in the nominal exchange

rate.

2.2 Domestic Firms

This section describes the main equations of the profit maximization problem for the

domestic firms. There is a continuum of monopolistically competitive domestic firms

of mass 1. Each firm i produces a differentiated good using labor as single input.

The individual and aggregate production functions are given by

yH,t(i) = ε̃a,t Nt(i) and YH,t =
(∫ 1

0
yH,t(i)

ε−1
ε di

) ε
ε−1

(8)

where ε is the elasticity of substitution between the different varieties and ε̃a,t rep-

resents technological innovation that is common to all firms. Because the goods are

imperfect substitutes, each firm has some degree of monopolistic power when setting
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prices. In doing so, firms take into account that they face downward sloping demand

curves. The domestic demand for variety i that emerges from the household problem

is given by

CH,t(i) =
(

PH,t(i)
PH,t

)−ε

CH,t (9)

In words, this means that the quantity demanded of good i varies inversely with its

price PH,t(i). We assume staggered price setting à la Calvo where θH denotes the

probability that the firm cannot reset its price. The implied price duration is then

1/(1− θH). Firms that cannot re-optimize follow an indexation rule of the form

PH,t(i) = PH,t−1(i)
(

PH,t−1

PH,t−2

)δH

(10)

That means, these firms automatically adjust prices taking past inflation of domestic

goods prices into account. The parameter δH indicates to what degree they react

to past inflation. Although firms are heterogeneous ex ante, we will only consider

the symmetric equilibrium in which all firms behave identically and can consequently

omit the index i in what follows. Firms that can reset their prices in period t therefore

all set the same one which we denote by P ′
H,t. It can be shown that the price index

for domestic goods evolves according to

PH,t =


(1− θH) P ′

H,t
1−ε +θH

(
PH,t−1

(
PH,t−1

PH,t−2

)δH
)1−ε




1
1−ε

(11)

A firm choosing the optimal price in period t maximizes the present discounted value

of profits, taking into account the probability of not being able to re-set prices in the

future. Firms sell their goods both domestically and abroad. When assuming that

foreign demand is of the same functional form as domestic demand (9), the demand

curve faced in period t + τ for a firm that last re-set prices optimally in period t and

henceforth just adjusted prices according to the indexation rule (10) is given by

CH,t+τ |t =

(
P ′

H,t

PH,t+τ

(
PH,t+τ−1

PH,t−1

)δH
)−ε

(CH,t+τ + C∗
H,t+τ ) (12)

The expected discounted profit for a firm that can re-optimize its price in period t is

given by

Et

∞∑

τ=0

θτ
HQt,t+τCH,t+τ |t

[
P ′

H,t

(
PH,t+τ−1

PH,t−1

)δH

− PH,t+τMCt+τ

]

10



where MCt = Wt/(PH,t ε̃a,t) are real marginal costs and Qt,t+τ is a time-dependent

stochastic discount factor. Under the assumption that households have access to a

complete set of state-contingent claims, Qt,t+τ is the pricing kernel of such a security

maturing in t + τ and is given by Qt,t+τ = βτΛt+τ/Λt with Λt = λt/Pt. Since

the household is the owner of the firms and receives the profits, it directs firms to

make their decisions based on the households intertemporal rate of substitution. The

optimal price resulting from the firm’s maximization problem is given by

P ′
H,t =

ε

ε− 1

∑∞
τ=0 θτ

HEt

[
Qt,t+τCH,t+τ |tPH,t+τMCt+τ

]
∑∞

τ=0 θτ
HEt

[
Qt,t+τCH,t+τ |t(PH,t+τ−1/PH,t−1)δH

] (13)

2.3 Domestic Retailers

The domestic retailers import foreign differentiated goods for which the law of one

price holds at the docks. However, we assume that also the retail sector is charac-

terized by monopolistic competition so each retailer has some degree of price setting

power. In other words, imports are subject to local currency pricing which gives

rise to deviations from the law of one price in the short run. Analogous to the do-

mestic goods producing firms, retailers face a staggered price setting problem with

indexation. The price stickiness parameter for this sector is denoted by θF and the

indexation parameter by δF . The indexation rule and the price index for imports

can then be expressed along the lines of (10) and (11). When focussing again only

on the symmetric equilibrium in which all retailers behave identically, the demand

faced by a retailer in period t + τ conditional on having last re-optimized its price in

period t is given by

CF,t+τ |t =

(
P ′

F,t

PF,t+τ

(
PF,t+τ−1

PF,t−1

)δF
)−ε

CF,t+τ (14)

The expected discounted profit for a retailer that can re-set its price in period t is

given by

Et

∞∑

τ=0

θτ
F Qt,t+τCF,t+τ |t

[
P ′

F,t

(
PF,t+τ−1

PF,t−1

)δF

− ẽt+τP
∗
F,t+τ

]

The optimal price results from maximizing this expression with respect to P ′
F,t, sub-

ject to the demand (14) and is given by

P ′
F,t =

ε

ε− 1

∑∞
τ=0 θτ

F Et

[
Qt,t+τCF,t+τ |tẽt+τP

∗
F,t+τ

]

∑∞
τ=0 θτ

F Et

[
Qt,t+τCF,t+τ |t(PF,t+τ−1/PF,t−1)δF

] (15)
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2.4 Monetary Authority

As already mentioned, we assume that the monetary policy instrument is the short

term interest rate it. We consider a policy rule for the central bank in which it takes

information on current inflation, output, output growth, changes in the nominal ex-

change rate and past interest rates into account. We present the explicit specification

in the summary of the linearized model equations below.

2.5 Market Clearing

The market clearing condition for the domestic economy requires

YH,t = CH,t + C∗
H,t (16)

where the left-hand-side is the supply of domestic goods and the right-hand-side is

composed of domestic demand and export demand from the rest of the world. Fol-

lowing Kollmann (2002) we assume that export demand resembles domestic demand

given by (3) and is given by

C∗
H,t = ς

(
P ∗

H,t

P ∗
t

)−η∗

Y ∗
t (17)

where we allow the foreign elasticity of substitution η∗ to potentially differ from the

domestic counterpart η.9

We restrict foreign investors from holding domestic bonds. Domestic bond market

clearing therefore requires that net supply Dt = 0 for all t. The net supply of foreign

bonds is zero as well. The reason for this is that number of domestic investors holding

foreign debt is negligible relative to foreign investors.

2.6 The Foreign Economy

Instead of just assuming exogenous driving processes for all foreign variables, we want

to express also the foreign variables as driven by fundamental economic innovations.

We therefore take the model for the small open economy and - loosely speaking -

solve it for the closed economy limiting case. In what follows, we point out the main

differences. All foreign variables and parameters will be denoted by a ∗-superscript.

Since the foreign economy is very large, trade flows to and from the domestic economy

9The functional form of (17) is assumed to be the same as in (3). The parameter ς represents the share
of foreign imports to total foreign output. Although it is going to zero, we technically need it to have a
well-defined steady state for C∗H .
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are negligible compared to total foreign economic activity. Technically, this means

that α∗ tends to zero. As a consequence, foreign consumption is given by C∗
t = C∗

F,t

which implies that the foreign consumers price index is entirely determined by foreign

goods prices P ∗
t = P ∗

F,t. Foreign investors do not face a risk premium so the return

on foreign bonds for them is simply 1 + i∗t . The price setting problem for foreign

goods producing firms is exactly the same as for domestic firms. Since imports from

the small open economy constitute a negligible share of total income, there is no

foreign import sector. We assume that the foreign monetary authority also follows a

Taylor-type rule without the inclusion of the exchange rate.

2.7 Equilibrium

The equilibrium is defined as a vector of prices {P ?
t , P ?

H,t, P
?
F,t,W

?
t , ẽ?

t , i
?
t , P

∗
t

?, i∗t
?,W ∗

t
?}

together with a vector of allocations {C?
t , C?

H,t, C
?
F,t, Y

?
H,t, N

?
t , B?

t , D?
t , Y

∗
t

?} such that

equations (1)-(17) are satisfied. Before proceeding to the log linear approximation

of the equilibrium conditions, let us define the real exchange rate as q̃t = ẽtP
∗
t /Pt

and the terms of trade for the domestic economy as St = PF,t/PH,t. Furthermore,

it will be convenient to define ΨF,t = ẽtP
∗
t /PF,t which according to Monacelli (2005)

represents short run deviations from the law of one price. It will subsequently be

referred to as the law of one price gap.

2.8 Log-Linear Approximation to the Model

For the estimation of the model we derive a log-linear approximation of the equilib-

rium conditions around a deterministic steady state. The steady state of the model is

characterized by zero inflation and balanced trade. All variables are to be interpreted

as log-deviations from the steady state. We use small letters unless otherwise noted,

i.e. xt = log(Xt/X).10 We list the equations of the linear approximation. For the

derivation we refer to the appendix.

The Euler equation (6) can be linearized straightforward to

ct − hct−1 = Et(ct+1 − hct)− 1− h

σ
(it − Etπt+1) +

1− h

σ
(εg,t − Etεg,t+1) (18)

The linearized domestic goods market clearing condition is given by

yt = (1− α)ct + αη(2− α)st + αηψF,t + αy∗t (19)

10Exceptions are the nominal and real exchange rate which are defined as et = log(ẽt/ẽ) and qt =
log(q̃t/q̃) as well as the shocks εx,t = log(ε̃x,t/ε̃x).
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where the log of the law of one price gap is ψF,t = et + p∗t − pF,t and the log terms of

trade are st = pF,t − pH,t. Since for the estimation we use data on the real exchange

rate, we must relate the former variable to the real rather than the nominal exchange

rate. The terms of trade and the real exchange rate are related according to

qt = et + p∗t − pt = ψF,t + (1− α)st (20)

Since we also use data on the import and export price deflators rather than the

indices themselves, we take first differences of the terms of trade and obtain

∆st = πF,t − πH,t (21)

A log-linear approximation to the domestic firms’ optimality condition (13) and the

price index for domestic goods (11) implies the following Phillips curve

πH,t − δHπH,t−1 = βEt(πH,t+1 − δHπH,t) + κHmct (22)

where κH = (1−θH)(1−θHβ)
θH

and the real marginal costs are given by

mct = ϕyt − (1 + ϕ)εa,t + αst +
σ

1− h
(ct − hct−1)

Similarly, a log-linear approximation to the retailers’ optimality condition (15) yields

another Phillips curve

πF,t − δF πF,t−1 = βEt(πF,t+1 − δF πF,t) + κF ψF,t + εcp,t (23)

where κF = (1−θF )(1−θF β)
θF

. We have augmented the Phillips curve with a cost-push

shock εcp,t to capture inefficient variations in mark-ups. Domestic CPI inflation and

the domestic goods price deflator are related according to

πt = πH,t + α∆st (24)

Linearizing the uncovered interest rate parity condition (7) is straightforward and

together with the definition of the real exchange rate yields

it − i∗t = Etπt+1 − Etπ
∗
t+1 + Et∆qt+1 − χat − εs,t (25)
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The parameter χ captures the elasticity of the risk premium with respect to net

foreign debt. A log-linear approximation to the budget constraint yields

ct + at =
1
β

at−1 − α(st + ψF,t) + yt (26)

where at = log(ẽtBt)− log(PtȲ ) is the log real net foreign asset position as a fraction

of steady state domestic income. Monetary policy enters in the model by assuming

that the central bank follows a generalized Taylor rule of the form

it = ρiit−1 + ψππt + ψyyt + ψ∆y∆yt + ψe∆et + εM,t (27)

εM,t is a monetary policy shock. The foreign economy is described by an Euler

equation

y∗t − h∗y∗t−1 = Et(y∗t+1 − h∗y∗t )−
1− h∗

σ∗
(i∗t − Etπ

∗
t+1 − ε∗g,t + Etε

∗
g,t+1), (28)

a Phillips curve

π∗t − δ∗π∗t−1 = β∗Et(π∗t+1 − δ∗π∗t ) + κ∗mc∗t , (29)

with κ∗ = (1− θ∗)(1− θ∗β∗)/θ∗ and the real marginal costs given by

mc∗t = ϕ∗y∗t − (1 + ϕ∗)ε∗a,t +
σ∗

1− h∗
(y∗t − h∗yt−1),

and a Taylor rule

i∗t = ρ∗i i
∗
t−1 + ψ∗ππ∗t + ψ∗yy

∗
t + ψ∗∆y∆y∗t + ε∗M,t (30)

Equations (18)-(30) constitute a system of linear rational expectations difference

equations in the 13 variables {ct, yt, it, qt, st, πt, πH,t, πF,t, ψF,t, at, y
∗
t , i

∗
t , π

∗
t }. When

augmented by driving processes for the exogenous shocks, this system can be solved

by means of a numerical routine. We will assume that the monetary policy shocks

{εM,t, ε
∗
M,t} are distributed iid and that the remaining shocks follow univariate AR(1)

processes given by

εx,t = ρxεx,t−1 + εx,t with E[εx,tε
′
x,t] = σx

When solving the system of difference equations, we seek for a representation of the

endogenous variables in term of the exogenous shocks. We use the method of Sims

(2002) and therefore define a N -dimensional state vector of endogenous variables
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St
11, a vector of fundamental shocks Et, and a M -dimensional vector θ that contains

all model parameters. The solution of the linearized system takes the form

St = G(θ)St−1 + H(θ)Et

where the matrices G(θ) and H(θ) are complicated non-linear functions of the pa-

rameter vector θ.12 It is important to see that although these matrices are large in

dimension - G(θ) has the dimension N ×N - they are restricted through the model

such that the unknown number of parameters M is small.

11In our case, N = 26. The state vector St is composed of the 13 endogenous variables, the 6 exogenous
shocks following an AR(1) process, and, because we are using the Sims-algorithm, 7 expectational variables.

12We will restrict our analysis to the parameter space which implies a unique stable solution. For a dis-
cussion of indeterminate stable solutions in linear rational expectations models, see Lubik and Schorfheide
(2004).
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3 Estimation Method: The DSGE-VAR Ap-

proach

In this section, we introduce the estimation method that will be used for our empir-

ical analysis. It is referred to as the DSGE-VAR approach elaborated by DelNegro

and Schorfheide (2004). First, we describe the general idea and discuss the main

concepts intuitively. Then we show how to formally implement the idea. This in-

volves the definition of an empirical model in order to derive the likelihood function

and the formal definition of the prior distribution. We proceed by showing how a

Markov-Chain Monte-Carlo (MCMC) algorithm can be used to simulate the poste-

rior distribution of the DSGE-VAR and discuss how to choose the optimal weight

of information from the DSGE model in the estimation. Finally, we describe how

structural shocks can be identified using DSGE model restrictions and discuss how to

do policy experiments with the estimated model. Much of the subsequent discussion

follows closely DelNegro and Schorfheide (2004), DelNegro and Schorfheide (2006),

and An and Schorfheide (2007).

3.1 General Idea

There is a close relationship between DSGE models and VARs: The DSGE model

described in Section 2 is equivalent to a VAR(1) in the variables St. The parameters

are constrained by the restriction functions G(θ) and H(θ). Let Xt be a subset of

St that contains variables that can be observed. A general result is that Xt still

has a VAR representation. However, the number of lags to be included is possibly

infinite. The VAR(∞) can be approximated by a VAR of finite order p. The p first

autocovariances of this approximation are equal to the first p autocovariances of the

VAR(∞). It follows that the first p autocovariances of the DSGE model are equal

to those of a restricted VAR(p). Hence, up to an approximation error in high order

autocovariances, estimating the DSGE model is equivalent to estimating a restricted

VAR(p). By increasing p, one can successively match autocovariances of higher orders

and reduce the approximation error. Importantly, the restricted VAR inherits the

properties of the DSGE model: Both are highly stylized versions of the real world by

construction. Therefore, from a quantitative point of view, unrestricted VARs often

have superior properties, suggesting that the restrictions implied by DSGE model

are at odds with the data. On the other hand, unrestricted, non-structural VARs are

not directly useful for policy analysis.

The DSGE-VAR approach of DelNegro and Schorfheide (2004) provides a solution
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to this dilemma. The key idea is the following: The researcher is aware of the fact

that some simplifications in the modeling strategy potentially induce deviations of

the model implied moments from the moments of the data. Still, she beliefs that

the DSGE model contains the mechanisms which are important for policy analysis.

Hence, it is useful to imbed the restrictions into the empirical model, but at the same

time allow for deviations in order match the properties of the data more closely. The

idea can be implemented using a Bayesian approach. In Bayesian analysis, the goal

is to derive the distribution of the parameters using information contained in the

data and prior beliefs about the parameters. The information contained in the data

is described by the likelihood function of a model which is supposed to fit the data

well. DelNegro and Schorfheide (2004) choose a VAR for this purpose and exploite

the similarities to DSGE models described above. The information contained in

the likelihood function is augmented with information from prior beliefs. Hence,

it is natural to interpret the DSGE model restrictions as prior beliefs about the

relationship of parameters in the VAR. Scepticism about the concrete implications

of these beliefs can be introduced using a prior distribution that also assigns mass

to VAR parameter combinations which are not exactly satisfying the restrictions.

The degree of confidence in the model implication is higher if most of the prior mass

is very close to the DSGE restrictions. If the prior distribution is degenerate in

the sense the there is mass only at the exact restrictions, the fully restricted VAR

approximation to the DSGE model is estimated. If the mass is rather spread, the

researcher does not strongly belief in the restrictions implied by the DSGE model.

In the limiting case of equally spread mass, an unrestricted VAR is estimated.

Dummy observation interpretation: The way DelNegro and Schorfheide

(2004) set out the prior distribution has the following intuitive interpretation: The

DSGE model is used to generate a sample of ‘dummy observations’. These simulated

artificial observations are added to the sample of observed data and the VAR is es-

timated on the augmented sample. How much the estimates are influenced by the

DSGE model restrictions depends on the relative size of the simulated and the actual

sample. When the sample of simulated observations is small relative to the actual

sample, the estimates are not heavily restricted by the DSGE model. Increasing

the size of the artificial sample imposes the restrictions implied by the DSGE model

more tightly. For an artificial sample of infinite size, the restrictions of the DSGE

model are fully imposed. We will parametrize the tightness of the prior as the ratio

of the sample size of artificial data relative to the actual sample size and denote it by

λ. This allows to choose how much the estimates are influenced by the restrictions
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implied by economic theory in a gradual way.

Updating the DSGE model parameters: One advantage of the DSGE-VAR

approach is that the deep DSGE model parameters are estimated jointly with the

VAR parameters. The intuitive description above is based on a given set of deep

parameters in the DSGE model. However, the DSGE model parameters are rarely

known with certainty. The researcher may have some uncertain a priori beliefs about

their values. Hence, a prior distribution can be placed on the parameters to model the

uncertainty. Then, a hierarchical prior can be constructed as follows: The prior for

the VAR coefficients given a set of deep structural parameters is multiplied by a prior

for these ‘auxiliary’ parameters. Now, since the model parameters appear in the prior

distribution, they are updated with sample information via Bayes’ theorem. The two

limiting cases are illustrative for this (following Propositions 1 and 2 in DelNegro and

Schorfheide, 2004): If the number of dummy observations goes to infinity, that is, if

all the prior mass is located at the DSGE restrictions, only the deep DSGE model

parameters are free to adjust. As already mentioned, this amounts to estimating a

fully restricted VAR approximation to the DSGE model. If the number of dummy

observations is small relative to the actual sample size, but both samples are large,

the deep parameters are chosen such that a weighted discrepancy between moments

implied by the unrestricted VAR and the DSGE model is minimized.13 That is, the

deep parameters are updated in such a way that the unrestricted moments of the

data are matched as close as possible.

Optimal weight of the prior: So far, we have left open the question of how

the tightness of the DSGE prior, that is, the optimal size of the sample of dummy

observations, should be chosen. A natural way in our Bayesian framework is to

derive the posterior probabilities of the DSGE-VAR model for different values of

the tightness parameter λ. The posterior model probabilities essentially tell what

the probability of a certain tightness is. Assuming a quadratic loss function of the

decision maker, one would use a weighted average over the set of considered weights

to calculate the statistics of interest. In practice, one often uses only the model

with the highest posterior probability. There is a decision-based justification of this,

assuming a more peculiar loss function. However, if the grid of weights for which

the DSGE-VAR is estimated is not very fine, the weight of DSGE-VAR with the

highest probability will be almost one anyway. That is, there is no relevant difference

between the theoretically optimal choice and the practice of choosing the model with

13The weight depends on the relative size of artificial to actual data.
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the highest posterior probability when the underlying loss function is quadratic.

Based on posterior model probabilities, it is also possible to evaluate the degree of

misspecifiation in the DSGE model. If the optimal weight is very low, the restrictions

in the DSGE model are shown to be at odds with the data. If the optimal weight is

high, theory helps improving the accuracy of the estimates. However, this evaluation

will remain vague in the sense that there is nothing like a ‘critical value’ above which

one can say that the DSGE model is particularly good. The fundamental reason for

this is that it is not clear what the optimal non-structural reference model would

be. A classical VAR(p), corresponding to zero weight of the DSGE prior hardly

is the optimal model, even if the DSGE model is meaningless. A non-structural

Minnesota style prior would help to get better model probabilities as well as a superior

forecast performance. A further symptom of the problem will become apparent in

our application. Depending on the choice of the number of lags p, the optimal weight

varies: the higher p, the higher is the optimal weight. That is, the more restrictive

the reference model is, the less prior information has to be induced.

Identification of shocks based on DSGE model restrictions: The map-

ping between structural shocks in the economy and the dynamic responses of the

VAR variables to these shocks is not identified only by using information contained

in the moments of the data. One has to use additional restrictions to relate the co-

variance matrix of the residuals to the structural shocks. A standard choice is to use a

Cholesky decomposition of the covariance matrix of the residuals. This corresponds

to timing restrictions: Some variables are assumed not to respond contemporane-

ously to certain structural shocks. The ordering of variables in the decomposition

is of fundamental importance for the results, but usually ad-hoc and not justified

by economic theory. In contrast, the DSGE-VAR allows to use economic theory to

identify the shocks. Key is to recognize that in the DSGE model, the shocks are

exactly identified. That is, there is a unique transformation of the Cholesky decom-

position of the covariance matrix of the residuals in the DSGE model to the true

mapping. The idea to identify the shocks in the DSGE-VAR is to transform the

Cholesky decomposition of covariance matrix of the DSGE-VAR residuals with the

unique transformation inferred from the DSGE model. The mapping from the shocks

to the DSGE-VAR residuals will deviate from the mapping in the DSGE model if

the implications of the DSGE model for the covariance matrix of the residuals are

different from the actual covariance matrix in the DSGE-VAR.
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Policy analysis in the DSGE-VAR framework: A central issue is how

the DSGE-VAR model can be used for policy analysis. Obviously, as there are also

non-structural elements involved, the Lucas critique (see Lucas, 1976) potentially

applies. A useful result to study the properties is that the posterior mean of the

VAR parameters can be decomposed into a ‘structural component’ and a ‘correction’

to match the data moments more closely. Depending on the tightness of the DSGE

prior, the correction receives more or less weight. The critical assumption making

policy analysis with the DSGE-VAR meaningful is that the correction is itself policy

invariant. That is, switching to a different policy specification does not influence

the way the original structural component should be corrected. This parallels the

idea that the main policy dependent mechanisms are build into the model, but there

are additional things going on in the economy which are relevant for the concrete

quantitative properties of the data, but not the policy question at hand.

3.2 Formal Description

A fundamental result used in Bayesian analysis is that the posterior distribution is

proportional to the likelihood function multiplied by the prior distribution. This is

referred to as Bayes’ theorem and can be stated formally as

p(Θ|X) ∝ p(X|Θ)p(Θ)

where X represents observed data, Θ are the unknown parameters of any model un-

der consideration, and p(·) are generic density functions. In other words, given the

likelihood function and the prior distribution, the (unnormalized) posterior distribu-

tion is identified. Hence, in a first step we seek to define the former two ingredients.

As the mapping from the DSGE model parameters to the moments of the data is

highly non-linear, we are not able to analytically derive the posterior distribution of

the parameters. In a second step, we therefore describe a numerical method that

generates draws from the posterior distribution. Subsequently, we justify the use of

the marginal data densities as a measure of the posterior model probabilities and

describe the so-called ‘modified harmonic mean’ estimator that is used to calculate

the marginal data density. Finally, we formally describe the implementation of a

generic policy experiment in the DSGE-VAR framework.

Likelihood function: To derive the likelihood function, we have to define how

the data evolve given a particular set of parameters. We assume that the observable
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data vector Xt follows a vector autoregressive process of order p:

Φ(L)Xt = et

where

Φ(L) = 1− Φ1L− . . .− ΦpL
p

and et is the vector of one step ahead forecast errors. The dimension of et as well as

Xt is N × 1. We assume that et is normally distributed with mean zero. Formally,

this can be written as

et = HV ARεt, εt ∼ iiN(0, I)

The normality assumption is made in order to simplify the derivation of the pos-

terior density of the parameters. We will estimate the reduced form of this model:

HV AR is not identified without imposing additional restrictions. Only Φ(L) and

Σ = HV ARH ′
V AR can be estimated. It follows that the likelihood function is

p(X | Φ,Σ) ∝ |Σ|−T/2 exp
(
−1

2
tr(Σ−1(X ′X − Φ′X ′

P X −X ′XP Φ + Φ′X ′
P XP Φ))

)

where

XP =




X ′
p X ′

p−1 . . . X ′
1

X ′
p+1 X ′

p . . . X ′
2

...
...

. . .
...

X ′
T−1 X ′

T−2 . . . X ′
T−p




and X =




X ′
p+1

X ′
p+2
...

X ′
T




Note that this likelihood function is conditional on the first p observations due to the

lag-structure of the VAR.

Prior distribution: The prior distribution is conveniently written in hierarchical

form:

p(Σ, Φ, θ) = p(Σ, Φ|θ)p(θ)

where we denote the vector containing the DSGE model parameters by θ. The

decomposition is useful because given θ, the prior for Σ and Φ has a standard form.

In order to describe this conditional prior distribution, we define a vector of variables

X∗
t , t = 1, . . . , T ∗ as follows:

X∗
t = ZSt
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The selection matrix Z is chosen such that the variables in the model correspond to

the observed data. X∗
t has a VAR representation of infinite order. This system is

approximated by including only a finite number of lags:

X∗
t ≈

p∑

j=1

Φ(θ)∗jX
∗
t−j + e∗t

with e∗t ∼ iiN(0, Σ∗(θ)). Now define implied coefficient matrices Φ∗(θ) and Σ∗(θ) as

the maximum likelihood estimates (MLE) of Φ and Σ for a VAR(p) on an infinitely

large sample of artificial observations. They are given by the Yule-Walker equations:

Φ∗(θ) = E(X∗′
P X∗

P )−1E(X∗′
P X∗)′

Σ∗(θ) = E(X∗′X∗)− E(X∗′
P X∗)E(X∗′

P X∗
P )−1E(X∗′

P X∗)′

where

X∗
P =




X∗′
p X∗′

p−1 . . . X∗′
1

X∗′
p+1 X∗′

p . . . X∗′
2

...
...

. . .
...

X∗′
T ∗−1 X∗′

T ∗−2 . . . X∗′
T ∗−p




and X∗ =




X∗′
p+1

X∗′
p+2
...

X∗′
T ∗




The moments E(X∗′X∗), E(X∗′
P X∗) and E(X∗′

P X∗
P ) can easily be calculated given

the solution to the DSGE model (for details we refer to the appendix of DelNegro

and Schorfheide, 2004). Now, the prior distribution of Φ and Σ given θ is chosen to

be of the following Inverted-Wishart-Normal form:

Σ|θ ∼ IW (Σ∗(θ), T ∗ −Np− 1)

Φ|Σ, θ ∼ N

(
Φ∗(θ),Σ⊗

(
T ∗E(X∗′

P X∗
P )

)−1
)

The distributions are centered at Φ∗ and Σ∗. One can immediately see that the prior

distribution for Φ given Σ gets tighter around the MLE of Φ the larger the size of the

artificial sample is. To justify the ‘dummy observation’ interpretation of the DSGE

prior, it is illustrative to look more closely at the functional form of the density of a

random variable with an Inverted-Wishart-Normal distribution. In our case
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p(Φ, Σ | θ) ∝ |Σ|−λT ∗+n+1
2

exp
{− 1

2 tr[Σ−1(E(X∗′X∗)− Φ′E(X∗′
P X∗)− E(X∗′X∗

P )′Φ + Φ′E(X∗′X∗)′Φ)]
}

Comparing this density to the likelihood p(X | Φ, Σ, θ), we see that it resembles the

(quasi-) likelihood function14 of dummy observations X∗

p(X∗ | θ) ∝ |Σ|−T ∗
2

exp
{− 1

2 tr(Σ−1(X∗′X∗ − Φ′X∗′
P X∗ −X∗′X∗′

P Φ + Φ′X∗′X∗′Φ))
}

multiplied with an (improper) prior

p(Φ, Σ) = Σ−
n+1

2

The prior density of Φ and Σ given θ only differs because, in order to avoid stochastic

variation in the moments of the dummy observation, the simulated sample moments

are replaced with their expectations. That is, our prior is chosen as if we estimated

the parameters Φ and Σ based on the sample of observed and simulated data using

only an improper prior. The sample size of the artificial sample is T ∗ = λT , therefore

λ is a parameter which reflects the ‘tightness’ of the DSGE model prior. The larger

λ, the larger the sample compared to the actual sample. If λ is large, the estimates

of Φ and Σ will concentrate on the restrictions implied by the DSGE model.

We have defined the prior density of Σ and Φ given θ so far. The prior density p(θ)

remains to be determined. This is done following the standard strategies used in the

literature on estimating DSGE models.

Posterior distribution: The posterior distribution can be factorized in the same

way as the prior distribution:

p(Σ, Φ, θ|X) = p(Σ,Φ|θ, X)p(θ|X)

Because of the choice of a conjugate prior for the VAR parameters given θ, the

posterior of the same parameters given θ is of the same form as the prior:

14For two reasons, this can be the quasi likelihood function: First, the DSGE model does not necessarily
have a VAR(p) representation. Second, the likelihood function corresponds to normally distributed shocks,
which has not been assumed so far.
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Σ | θ, X ∼ IW
(
Σ̃(θ), (1 + λ)T −Np− 1

)
(31)

Φ | Σ, θ, X ∼ N
(
Φ̃(θ), Σ⊗ (λTE(X∗′

P X∗
P ) + X ′

P XP )−1
)

(32)

It is centered at the MLE on both actual and artificial data, Φ̃(θ) and Φ̃(θ). Usually,

the prior for θ does not have a simple standard form. Moreover, the mapping from

θ to the moments of the artificial data is highly non-linear in most models. Hence,

the marginal posterior distribution for θ will not have a standard form. To calculate

the distribution, one has to use numerical methods, as described in the next section.

MCMC algorithm: The estimation proceeds in two steps, following the decom-

position of the posterior distribution above. Step 1 is to produce J draws from

p(θ|X). In Step 2, we draw from the posterior distribution of the VAR parameters

given the draws from Step 1.

Step 1: Drawing from p(θ | X): The distribution depends on prior knowledge about

specific parameters in the model. Usually, there is no way to obtain a standard

posterior distribution for θ. A possible way to draw from a non-standard dis-

tribution is a Random Walk Metropolis-Hasting (MH) Algorithm. Given an

initial value θ0, a candidate θ∗ is drawn from a proposal distribution:

θ∗ = θj−1 + εprop

where a standard choice for the distribution of εprop is a multivariate t-distribution.

Then, the following ratio is calculated:

r =
p(X | θ∗)p(θ∗)

p(X | θj−1)p(θj−1)

The proposal θ∗ is accepted, that is we set θj = θ∗, with probability r =

min(1, r). If the θ∗ is rejected, we set θj = θj−1. These steps are repeated

for j = 1, . . . , J . For an exposition of MH algorithms and MH within Gibbs

algorithms see Geweke (2005). The key result is that the sequence of draws

forms a Markov Chain with unique stationary distribution p(θ | X). In order

to mitigate the effects of θ0, which is chosen arbitrarily, we discard a certain

number of initial draws. A prerequisite for using the algorithm is that the

likelihood can be evaluated for a given θ. The relevant likelihood is
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p(X | θ) ∝ |E(X∗′
p X∗

p ) + X ′
pXp|−N

2 |(λ + 1)T Σ̃(θ)|− (λ+1)T−k
2

|X∗′
p X∗

p |−
N
2 |λTΣ∗(θ)|−λT−k

2

Step 2: Drawing from p(Φ,Σ | θ,X): For j = 1, . . . , J , we first draw Σ from the

inverse Wishart distribution (31) and then draw Φ from the multivariate normal

distribution (32). In each case, θ is replaced by θj from the first step.

Posterior model probabilities: To choose the optimal tightness of the DSGE

prior, we will use a measure of in-sample fit. The measure is based on posterior model

probabilities for a grid of weights λ1, . . . , λI . We index each model by its values for

the weight of the DSGE prior λi and denote the respective models by Mλi . We then

calculate the posterior probabilities of each model:

p(Mλi |X) =
p(X|Mλi)p(Mλi)

p(X)
=

p(X|Mλi)p(Mλi)∑I
j=1 p(X|Mλj )p(Mλj )

To compare the different models, we put equal prior weight for the each model:

p(Mλi
) =

1
I
, ∀i

Hence, in relative terms, only the posterior marginal data density is used as a measure

of fit:

p(X|Mλ) =
p(X|Θ,Mλ)p(Θ|Mλ)

p(Θ|X,Mλ)

where Θ are all the unknown parameters of the model. The selection criterion me-

chanically favors models with a high likelihood, but imposes a penalty on too loose

priors. The density p(X|Mλ) cannot be calculated analytically. However, the har-

monic mean estimator proposed by Geweke (1999) can readily be applied. This

estimator is based on the following identity:

1
p(X)

=
∫

f(Θ)
p(X|Θ)p(Θ)

p(Θ|X)dΘ

where
∫

f(Θ)dΘ = 1. This expression is estimated with

1

p̂(X)
=

1
J

J∑

j=1

f(Θj)
p(X|Θj)p(Θj)

In principle, any function f(Θ) which integrates to one can be used. A standard

choice is
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f(Θ) = q−1(2π)−d/2|VΘ|−
1
2 e−

1
2
(Θ−Θ̄)V −1

Θ (Θ−Θ̄) × I
[
(Θ− Θ̄)V −1

Θ (Θ− Θ̄) < F−1
χ2

d(q)

]

Θ̄ refers to the posterior mean and VΘ is the posterior variance of the draws. The

parameter q is deliberately chosen to dampen the effect of extreme draws out of the

posterior density. One word of caution may be necessary at this point: In theory,

the value of q has no influence on the estimated value of the marginal data density.

In practice, the estimation depends to some extent on the value of q due to the finite

number of draws. It is therefore recommended to calculate p(X) for various values

of q.

Identification of shocks: The residuals in the DSGE-VAR relate to structural

shocks εt as

et = HV ARεt

with E(εtε
′
t) = IM . We assume that HV AR is invertible, which means that there are

as many shocks as observed series. The goal is to estimate the reaction of the series

Xt to the shocks εt:

HV AR =
∂Xt

∂ε′t

Given the responses on impact ∂Xt
∂ε′t

, one can use Φ(L) to calculate the responses

of Xt+h for h > 0. The problem of identification arises because HV AR can not be

uniquely determined using only information from the reduced form estimation of the

DSGE-VAR. HV AR is only restricted by its relationship to the covariance matrix of

the reduced form residuals:

Σ = HV ARE(εtε
′
t)H

′
V AR = HV ARH ′

V AR

It is always possible to plug an orthonormal matrix Ω into the above equation:

Σ = HV ARΩΩ′H ′
V AR

and define H̃ = HV ARΩ. This matrix also satisfies the restrictions implied by the

reduced form estimation. However, it implies potentially very different reactions of

Xt to the shocks. Hence, given an arbitrary H̃, there have to be further restrictions

on Ω in order to determine the responses HV AR. The identification schemes used in

the literature differ in the way Ω is chosen. DelNegro and Schorfheide (2004) propose
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an approach which relies on the fact that in the DSGE model the shocks are exactly

identified. That is, the matrix

∂ZSt

∂ε′t
= HDSGE(θ)

is uniquely determined. Recall that H(θ) can be calculated using standard methods

to solve linear(ized) DSGE models. Furthermore, there is a unique decomposition of

this matrix into the product of a triangular matrix Htr,DSGE(θ) and an orthonormal

matrix Ω(θ):

H(θ) = Htr,DSGE(θ)Ω(θ)

The idea is to set H̃ to Htr,V AR, the Cholesky decomposition15 of Σ, and then to use

Ω(θ) as a rotation:

HV AR(θ) = Htr,V ARΩ(θ)

On impact, the responses differ to the extent that Htr,DSGE(θ) and Htr,V AR differ.

That is, if the covariance matrix of residuals is similar to its counterpart in the DSGE

model, then the responses on impact will be close. For horizons bigger than zero,

there is the influence of Φ(L) which allows for further deviations of the DSGE-VAR

responses from the DSGE model implications.

Policy experiments: The ultimate goal is to use the estimated model for policy

experiments. Usually, a subset of parameters in the DSGE model can be interpreted

as ‘policy parameters’ in the sense that some authority can choose their values. In

our case, these may be the parameters in the Taylor rule. Denote those parameters

by θp and the non-policy parameters by θs. We want to calculate what the effects of

changing θp is, given the estimated marginal distribution of θs. The post-invervention

distribution of the DSGE model parameters is

p̃(θ|Y ) = p(θs|Y, θp)p(θp) = p(θs|Y )p(θp)

The second equality follows from the assumption that θs are deep parameters, that is,

they are not influenced by the policy change. We then calculate the post intervention

15There is a subtlety here: The Cholesky decomposition as well as the LR decomposition above is only
unique up to the sign of each row. Intuitively, changing the sign of a shock and at the same time changing
the sign of the response does not alter the results. Hence, one has to confirm that the ‘same’ sign convention
is applied for both decompositions.
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distribution of our VAR model parameters:

p̃(Φ, Σ|Y ) =
∫

p(Φ, Σ|Y, θ)p̃(θ|Y )dθ

Concretely, we use the posterior draws of θ and replace the policy parameters in this

distribution with the desired values. We then apply Step 2 of the MCMC algorithm

again for each draw of the adjusted distribution to draw from the post-intervention

distribution of Φ and Σ. The new VAR parameters can then be used to calculate

statistics of interest, such as the variability of output or inflation for example. In

this way, it is possible use the DSGE-VAR model to evaluate the effects of policy

changes. Note that the second step contains the ‘correction mechanism’: Instead

of using directly the VAR implications of the DSGE model for a particular set of

θ, that is replacing Φ and Σ in the integral above with the functions Φ∗(θ) and

Σ∗(θ), we use the conditional posterior distribution of the DSGE-VAR parameters.

This conditional posterior distribution consists in part of this function, but it is

augmented with the correction mechanism which is not influenced by the DSGE

model parameters by assumption.
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4 Empirical Implementation

4.1 Data

Following Justiniano and Preston (2008), we use data on output, inflation, interest

rates, the terms of trade and the real exchange rate. A central issue are how data

on the ‘world’ economy is obtained. Approximately 90% of the Swiss imports and

almost 80% of all exports are to, respectively from the OECD countries. We therefore

approximate output and prices of the world economy with data from these countries.

For output we use real GDP of OECD countries available from the OECD.stat. In-

flation is measured by the first difference of the implicit GDP deflator. For interest

rates, we use the US short-term interest rate as this is presumably the most impor-

tant interest rate for the world economy. Swiss data is obtain from the Swiss National

Bank database and the Swiss State Secretariat for Economic Affairs (SECO). Out-

put is measured by real GDP taken from the SECO database. Again, we use first

differences of the implicit GDP deflator as a measure for inflation. The interest rate

is the 3-month Libor, converted to quarterly data by averaging over the monthly se-

ries. The terms of trade are constructed from the implicit price deflators for imports

and exports available from the SECO database. The real exchange rate is the index

constructed by Swiss National Bank. As our theoretical model does not explicitly

model a trend, we use output growth instead of output in levels. This would be

consistent with a linear trend in output. Following Justiniano and Preston (2008)

we also use first differences of the the terms of trade and the real exchange rate. The

mapping Z is chosen such that the first differences in the data are directly linked to

the first differences of the same variables in the model. We therefore augment the

state vector St with lagged values of output, exchange rates and the terms of trade.

4.2 Prior Distribution and Model Specification

The prior distribution for the DSGE model parameters θ is obviously model depen-

dent. Our model has already been estimated by Justiniano and Preston (2008) using

Bayesian methods. We therefore closely follow their specification of the prior dis-

tribution. The differences are due to country specific implications of the data for

steady state values. We decided to use a higher discount factor for Switzerland than

the standard value of 0.99: β is calibrated to be 0.997 corresponding to an average

annualized real interest rate of 1.3%. The prior mean of the openness parameter α

is 0.43 according to the average of export and import shares (calculated as the sum

of exports and imports divided by twice the output, averaged over all time periods).
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We decided to estimate the parameters with a rather tight prior distribution.

With respect to the tightness of the DSGE prior, we estimate the model for a grid

of values, λ ∈ {2
3 , 0.8, 1, 1.5, 2, 3, 5, 10, 100}. We estimate the model for lag lengths 1

up to 4. In addition, we estimate the model without accounting for misspecification.

Based on posterior model probabilities, we select one model out of these 37 estimated

models for the policy evaluation.

4.3 MCMC Algorithm

The distribution of the innovations of the proposal draw in the MH-algorithm is

a standard multivariate t-distribution with 40 degrees of freedom. To specify its

covariance matrix, we proceed as follows: We search for the posterior mode of the

DSGE model parameters using the standard likelihood function without adjusting

for misspecification. The scaled inverse Hessian at the mode is used as covariance

matrix. It is scaled in order to get an acceptance rate between 0.2 and 0.3. We

have drawn 50 different sets of initial values out of the prior distribution for θ to

initialize the search for the mode. For all the sets, the algorithm converged to the

same posterior mode (up to a clearly numerical error). We therefore conclude that

posterior distribution is reasonably well behaved. We iterate 1’000’000 times over

Step 1 and 2 of the MCMC algorithm described in Section 3 for the grid of λ defined

above.16 As initial value for the MCMC algorithm, we also use the posterior mode

based on the likelihood function of the DSGE model. To mitigate the effect of

the initial values, we discard the first 20% of the draws. Convergence is checked

by graphically verifying that the recursive means remain stable after removing the

discarded draws. For computational reasons we evaluate only every 16th draw, such

that we are left with 50’000 draws to calculate the distribution of the parameters.

In order to select the optimal tightness of the prior, we calculate the harmonic mean

estimator of p(X|λ) for q = {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} for each λ in the grid.

The results differ across q’s only to a small extent. Moreover, the ordering of the

model is robust to the choice of q. For the model with the highest marginal data

density, we additionally run a chain with 5’000’000 draws as well as 10 chains with

1’000’000 draws starting with initial values drawn out of the prior distribution to

check the dependence on initial values. The differences across chains with respect to

the posterior distribution of θ are very small. Furthermore, combining these chains

resulted in virtually no difference to the posterior distribution obtained from the chain

with 5’000’000 draws. Therefore, when evaluating the model with the optimal λ, we

16It is actually not necessary to do Step 2 if the aim is only to calculate the marginal data density.
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only report results based on the latter. Again, we discard the first 20% of the draws.

We calculate the statistics of interest using every 40th draw, such that we are left with

100’000 draws. For all the calculations, we use our own MATLAB programs, except

for the posterior mode search where we rely on Christopher Sims’ csminwel routines

available on http://sims.princeton.edu/yftp/optimize. Whenever possible, we

debugged our code by comparing its results to the Frank Schorfheide’s GAUSS code

available on http://www.econ.upenn.edu/~schorf/research.htm.
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5 Results

In this section we present the results from our empirical analysis. First, we elaborate

on the selection of the model which will be used for the subsequent analysis. Sec-

ond, we discuss its prominent properties. Third, we focus on the coefficients in the

Taylor rule for different specifications. Finally, we show the results from our policy

experiments.

5.1 Model Selection

As described in section 3, the posterior marginal data density can be used as a selec-

tion criterion for choosing the optimal tightness of the DSGE prior. Figure 1 shows

the marginal data densities for the estimations of DSGE-VAR models with lags 1 up

to 4 over a finite grid of the tightness parameter λ. For our estimations the optimal

model choice results in p = 4 lags and λ = 2.5. All subsequent analyses will be based

on this choice.

Before we proceed, it is worthwhile noting a number of interesting features that

emerge from this graphical representation. An outstanding characteristic is the in-

verse U-shape of the posterior marginal data densities as a function of the tightness

parameter λ, irrespective of the number of lags included. The low data densities for

high values of λ suggest that DSGE model induced restrictions are not supported by

the data. On the other extreme, the low data densities for a low λ indicates that

prior information is beneficial because it helps to reduce the parameter space. In

sum, the qualitative shape of the data densities can be interpreted as evidence for

the usefulness of the DSGE-VAR approach to improve the fit of data. Another strik-

ing feature is the fact that optimal weight λ varies with different lags. The reason for

this can be attributed to the dual nature of the data density as selection criterion.

On the one hand, in-sample fit is rewarded and on the other hand, model complexity

is penalized. For small values of λ, the criterion favors a lower lag structure, meaning

that more complex models are penalized heavily when prior information is diffuse.

Finally, it is interesting to mention that the estimation of the “pure” DSGE model

yields a lower data density

5.2 Model Properties

Information about the DSGE parameter estimates for the model chosen in the pre-

vious section is contained in Table 2. The means and 80% highest posterior distribu-

tion intervals (HPDI80) are reported for the prior and posterior distributions for all
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parameters. The first conclusion is that the data contains information on the param-

eters, though not on all of them. This can be seen in that prior and posterior means

and HDPI80 do not coincide for most parameters. Turning to the estimates of some

selected parameters, it is striking that the inverse intertemporal elasticity of substi-

tution takes a very low value with the posterior mean being at 0.20. Furthermore,

we find that habit formation plays essentially no role and also inflation indexation

is not as prominent as claimed for instance by Christiano, Eichenbaum, and Evans

(2005) for closed economies. Previous studies like Adolfson, Laseen, Linde, and Vil-

lani (2007) or Justiniano and Preston (2008) have found the parameter for the trade

share α to be particularly difficult to identify, so it was calibrated. We find that

although it is updated slightly towards zero compared to the prior, estimation yields

a reasonable result with the posterior mean lying at 0.37. The parameters for price

stickiness in the domestic and the import sector both take rather high values. The

results suggest that prices in the import sector adjust more sluggishly than in the

domestic sector. The implied price durations based on the posterior means are 3.1

and 2.4 quarters, respectively.

We do not report the implied VAR coefficients because of their excessive dimension.17

Instead, we perform impulse-response analysis based on the identification described

in section 3 to evaluate the dynamic properties of the model. Figure 2 shows the

responses of the domestic output growth, inflation, interest rates as well as the terms

of trade and the real exchange rate to a contractionary monetary policy shock. Con-

sider first the impulse response functions of the purely estimated DSGE model which

are plotted in red. Contractionary monetary policy appreciates domestic currency

and lowers inflation and output. Because prices are sticky, the nominal appreciation

entails a drop in the real exchange rate. The terms of trade go up at impact. This

result is not evident a priori and can be explained by looking at equation (21). The

change in the terms of trade is the difference of import and domestic price inflation.

Depending on which one reacts more strongly to the monetary policy shock, the

terms of trade can move in either direction. In our case, we have found the Calvo

price stickiness parameter in the import sector to be higher than in the domestic

sector. This implies a more gentle reaction of import price inflation to the monetary

intervention resulting in the increase in the terms of trade. Turning to the compari-

son of the impulse responses of the plain model to those of the DSGE-VAR, we find

that the broad picture is confirmed. However, there are certain discrepancies, e.g. the

17Note that we have estimates for 4 coefficient matrices and the covariance matrix. Each of them is of
dimension (8× 8). Even when accounting for the symmetric structure of the covariance matrix this would
amount to reporting information on 292 VAR parameters.
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reaction of the terms of trade are nearly zero. This can once again be interpreted as

evidence that the DSGE-VAR approach is taking the misspecification of the DSGE

model into account and matches the data more closely.

5.3 The Taylor Rule

The main question we want to address in this paper is whether the monetary authority

should take movements in the nominal exchange rate into account when conducting

monetary policy. The estimates of the coefficients in the policy rule are thus of

special interest. They are already reported in Table 2. We additionally plot the

prior and posterior densities in Figure 4. To begin with, it stands out that the

data seems to contain information on all parameters except the coefficient on output.

Interest rate smoothing seems to be an important objective in Swiss monetary policy.

The coefficient on the lagged interest rate is updated distinctively towards one and

achieves a mean value of 0.88. The coefficients on inflation and output are in the

order of magnitude which is in line with the literature.

We now turn to the parameter which is in the center of our focus: the coefficient on

the change in the nominal exchange rate ψ∆e. Although the posterior distribution

is pulled towards zero compared to the rather diffuse prior, a lot of its mass is

clearly centered around a non-zero value. The posterior mean take a value of 0.12.

A justified critique can be pointed at the fact that zero has only been included

as boundary in the prior, therefore inherently favoring a non-zero support for the

posterior distribution. To dispel this scepticism, we re-estimate a DSGE-VAR for

the same specifications but restrict the exchange rate coefficient to be zero. Table

3 contains the log marginal data densities as well as the posterior odds ratios for

different truncation values q. The posterior odds ratio can be taken as a criterion in

favor or against the hypothesis ψ∆e = 0 versus ψ∆e > 0. The results clearly support

a non-zero exchange rate response of Swiss policy.

5.4 Policy Experiments

In the previous section we have already presented evidence that favors the inclusion

of the nominal exchange rate into the policy rule over the standard specification à la

Taylor. In this section we present further findings that support this conclusion. The

results of the policy experiments described in section 3 are summarized in Figures 5

and 6. It is assumed that the monetary authority sets the policy parameters but does

not influence the others. In this exercise, we let ψ∆e vary over a grid and re-draw the
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DSGE-VAR parameters from the post-intervention distribution. For each of the new

post-intervention estimates, we simulate the model and evaluate the macroeconomic

performance on the basis of both the variability of inflation and the variability of

output. In both graphs, the blue line represents the distribution of inflation and

output volatility, respectively, for the estimated benchmark model. The red line

shows the post-intervention distributions. The central finding is that no reaction

to the nominal exchange rate deteriorates macroeconomic performance - albeit only

slightly - both in terms of inflation and output volatility. A small positive value for

the coefficient around 0.1 seems to be optimal. As the coefficient grows too large,

macroeconomic performance worsens. Note that the HPDI80 of ψ∆e corresponds

closely to the region with the lowest volatilities of output and inflation. That is, the

Swiss National Bank did react optimally to the exchange rate movements in that

respect.
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6 Conclusion

The main contribution of this paper is to assess the question of optimal monetary

policy in the open economy. Specifically, we ask whether it is optimal for the cen-

tral bank to react to movements in the nominal exchange rate when macroeconomic

performance is evaluated by means of inflation and output variability. We estimate

a structural model that is suitable for addressing this question for Swiss data. In ad-

dition to only estimating the model, we use the approach proposed by DelNegro and

Schorfheide (2004) to account for possible misspecification of the underlying model.

Under some assumptions, this approach allows us to perform some counterfactual

policy experiments in which the central bank influences the policy parameters.

The key findings of this study is that the estimated coefficient on the exchange rate

reaction in the policy rule is non-zero. Moreover, the posterior odds ratio between the

basic version of the model and one in which the exchange rate coefficient is restricted

to be zero clearly favors the the former. Our policy experiments point towards the

same direction. Macroeconomic performance, measured both by the variability of

inflation and output, deteriorates for a zero coefficient. The exercises suggests that

a small, but positive reaction coefficient is optimal for the Swiss monetary policy

conduct.

We conclude by pointing out some issues that are left open for future research. The

robustness of our findings can be assessed along various aspects. The restrictions

imposed by the DSGE model may be more questionable for the foreign model econ-

omy. Therefore, one could alternatively specify a non-structural prior for the foreign

block. Another topic that potentially adds further insight could be a different spec-

ification of the Taylor-type rule. Specifically, a measure of output gap rather than

output could be included which would require the solution of the model for the flex-

ible price equilibrium. Furthermore, we could use alternative data: Prices could be

measured by the Consumer Price Index instead of the GDP deflator and the for-

eign block could be constructed using trade-weighted averages, for example. Finally,

our findings could be assessed in the light of a different model such as the standard

cash-in-advance model.
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A Tables and Graphs

Table 1: Prior distribution for DSGE model parameters

parameter distributiona mean standard deviation

β calibrated 0.977
χ calibrated 0.01
α Normal 0.43 0.05
σ Gamma 1.20 0.40
ϕ Gamma 1.50 0.75
θH Beta 0.50 0.10
θF Beta 0.50 0.10
η Gamma 1.50 0.75
h Beta 0.50 0.25
δH Beta 0.50 0.25
δF Beta 0.50 0.25
ρi Beta 0.50 0.25
ψπ Gamma 1.50 0.30
ψy Gamma 0.25 0.13
ψ∆e Gamma 0.25 0.13
ψ∆y Gamma 0.25 0.13
β∗ calibrated 0.99
σ∗ Gamma 1.20 0.40
ϕ∗ Gamma 1.50 0.75
θ∗ Beta 0.50 0.10
h∗ Beta 0.50 0.25
δ∗ Beta 0.50 0.25
ρ∗i Beta 0.50 0.25
ψ∗π Gamma 1.50 0.30
ψ∗y Gamma 0.25 0.13
ψ∗∆y Gamma 0.25 0.13
ρa Beta 0.50 0.20
ρg Beta 0.50 0.20
ρcp Beta 0.50 0.20
ρrp Beta 0.50 0.20
ρ∗a Beta 0.50 0.20
ρ∗g Beta 0.50 0.20
σm Inv Gamma 0.38 0.20
σa Inv Gamma 0.38 0.20
σg Inv Gamma 0.38 0.20
σcp Inv Gamma 0.38 0.20
σrp Inv Gamma 0.38 0.20
σ∗m Inv Gamma 0.38 0.20
σ∗a Inv Gamma 0.38 0.20
σ∗g Inv Gamma 0.38 0.20

aNote: The density function of the Inverse Gamma distribution
is of the following form p(x) ∝ x−ν−1e−νs2/2x2

. In our specifica-
tion, we use s = 0.3 and ν = 4.
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Table 2: 80% highest prior and posterior density intervals of DSGE model parameters

Prior Posterior
Mean 80% Interval Mean 80% Interval

α 0.43 [ 0.37 , 0.50 ] 0.37 [ 0.31 , 0.43 ]
σ 1.2 [ 0.65 , 1.63 ] 0.20 [ 0.13 , 0.27 ]
ϕ 1.5 [ 0.47 , 2.20 ] 1.13 [ 0.30 , 1.67 ]
θH 0.5 [ 0.37 , 0.63 ] 0.58 [ 0.48 , 0.70 ]
θF 0.5 [ 0.37 , 0.63 ] 0.68 [ 0.62 , 0.75 ]
η 1.5 [ 0.47 , 2.20 ] 1.26 [ 0.64 , 1.74 ]
h 0.5 [ 0.15 , 0.84 ] 0.08 [ 0.00 , 0.12 ]
δH 0.5 [ 0.15 , 0.84 ] 0.17 [ 0.00 , 0.26 ]
δF 0.5 [ 0.15 , 0.84 ] 0.13 [ 0.00 , 0.19 ]
ρi 0.5 [ 0.15 , 0.84 ] 0.88 [ 0.80 , 1.00 ]
ψπ 1.5 [ 1.09 , 1.85 ] 1.47 [ 1.11 , 1.78 ]
ψy 0.25 [ 0.07 , 0.37 ] 0.11 [ 0.04 , 0.16 ]
ψ∆e 0.25 [ 0.07 , 0.37 ] 0.16 [ 0.08 , 0.22 ]
ψ∆y 0.25 [ 0.07 , 0.37 ] 0.42 [ 0.27 , 0.55 ]
σ∗ 1.2 [ 0.65 , 1.63 ] 0.73 [ 0.38 , 0.97 ]
ϕ∗ 1.5 [ 0.47 , 2.20 ] 1.51 [ 0.47 , 2.23 ]
θ∗ 0.5 [ 0.37 , 0.63 ] 0.50 [ 0.37 , 0.62 ]
h∗ 0.5 [ 0.20 , 0.88 ] 0.13 [ 0.01 , 0.21 ]
δ∗ 0.5 [ 0.20 , 0.88 ] 0.25 [ 0.00 , 0.40 ]
ρ∗i 0.5 [ 0.20 , 0.88 ] 0.78 [ 0.71 , 0.87 ]
ψ∗π 1.5 [ 1.09 , 1.85 ] 1.77 [ 1.40 , 2.11 ]
ψ∗y 0.25 [ 0.07 , 0.37 ] 0.08 [ 0.02 , 0.12 ]
ψ∗∆y 0.25 [ 0.07 , 0.37 ] 0.42 [ 0.18 , 0.61 ]
ρa 0.50 [ 0.23 , 0.77 ] 0.31 [ 0.08 , 0.48 ]
ρg 0.50 [ 0.23 , 0.77 ] 0.79 [ 0.72 , 0.88 ]
ρs 0.50 [ 0.23 , 0.77 ] 0.71 [ 0.61 , 0.83 ]
ρcp 0.5 [ 0.23 , 0.77 ] 0.37 [ 0.13 , 0.54 ]
ρ∗a 0.5 [ 0.23 , 0.77 ] 0.81 [ 0.69 , 0.98 ]
ρ∗g 0.5 [ 0.23 , 0.77 ] 0.78 [ 0.71 , 0.87 ]
σi 0.38 [ 0.17 , 0.48 ] 0.26 [ 0.20 , 0.32 ]
σa 0.38 [ 0.17 , 0.48 ] 0.49 [ 0.25 , 0.63 ]
σg 0.38 [ 0.17 , 0.48 ] 0.33 [ 0.21 , 0.41 ]
σs 0.38 [ 0.17 , 0.48 ] 0.19 [ 0.14 , 0.22 ]
σcp 0.38 [ 0.17 , 0.48 ] 0.21 [ 0.18 , 0.24 ]
σ∗i 0.38 [ 0.17 , 0.48 ] 0.45 [ 0.19 , 0.61 ]
σ∗a 0.38 [ 0.17 , 0.48 ] 0.21 [ 0.15 , 0.24 ]
σ∗g 0.38 [ 0.17 , 0.48 ] 0.48 [ 0.22 , 0.64 ]
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Table 3: Posterior odds
Log marginal data densities Posterior oddsa

q ψ∆e > 0 ψ∆e = 0

0.05 184.14 168.16 0.11 ×10−6

0.10 184.30 166.09 0.01 ×10−6

0.25 184.44 166.98 0.03 ×10−6

0.50 184.09 167.62 0.07 ×10−6

0.75 184.23 167.92 0.08 ×10−6

0.90 184.26 168.09 0.10 ×10−6

0.95 184.28 168.14 0.10 ×10−6

aNote: Posterior odds of the hypothesis ψ∆e = 0 vs. ψ∆e > 0.
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Figure 1: Posterior marginal data densities over a grid for λ
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Figure 2: Impulse responses to a contractionary domestic monetary policy shock

44



0 2 4 6
−0.1

−0.05

0

0.05

0.1
∆ Output

0 2 4 6
−0.05

0

0.05
Interest Rate

0 2 4 6
−0.05

0

0.05
Inflation

0 2 4 6
−0.2

−0.1

0

0.1

0.2
∆ Real Exchange Rate

0 2 4 6
−0.1

−0.05

0

0.05

0.1
∆ Terms of Trade

 

 

DSGE−VAR
DSGE Model

Figure 3: Impulse responses to a contractionary foreign monetary policy shock
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B Derivations of the Model Equations

B.1 The Domestic Household

The household problem is solved in two stages. In a first step, we solve for the

combination of domestic and foreign goods bundles that minimize costs for any given

level of aggregate consumption. Then, given the costs for any level of consumption,

the household chooses Ct and Nt so as to maximize lifetime utility.

The cost minimization problem is given by

min
CH,t,CF,t

PH,tCH,t + PF,tCF,t s.t. Ct =
[
(1− α)

1
η C

η−1
η

H,t + α
1
η C

η−1
η

F,t

] η
η−1

(B-1)

Attaching the multiplier Pt to the constraint in (B-1) and maximizing with respect

to CH,t and CF,t yields the demand functions

CH,t = (1− α)
(

PH,t

Pt

)−η

Ct CF,t = α

(
PF,t

Pt

)−η

(B-2)

When plugging the demand function back into the CES-aggregator we find the the-

oretically correct consumer price index

Pt =
[
(1− α)P 1−η

H,t + αP 1−η
F,t

] 1
1−η (B-3)

Optimality also requires that the expenditures on all varieties are cost minimizing

for any level of the respective consumption bundles. Since we have introduced Calvo-

pricing with indexation, the cost minimization complicates a little bit compared to the

standard problem. Let P 1
H,t(i) and C1

H,t(i) denote the price and quantity demanded

of variety i from a firm that can re-optimize its price in period t and P 2
H,t(i) and

C2
H,t(i) the price and quantity demanded from a firm that cannot re-optimize its

price. Then the cost minimization problem of the household for the varieties of

domestically produced goods is given by

min
C1

H,t(i),C
2
H,t(i)

∫ θH

0
P 1

H,t(i)C
1
H,t(i)di +

∫ 1

θH

P 2
H,t(i)C

2
H,t(i) (B-4)

subject to the following Dixit-Stiglitz aggregator

CH,t =
[∫ θH

0
C1

H,t(i)
ε−1

ε di +
∫ 1

θH

C2
H,t(i)

ε−1
ε di

] ε
ε−1

(B-5)

49



Attaching the multiplier PH,t to constraint (B-5) and differentiating the Lagrangian

with respect to C1
H,t(i) and C2

H,t(i), the following variety demand functions can be

derived

C1
H,t(i) =

(
P 1

H,t(i)
PH,t

)−ε

CH,t (B-6)

C2
H,t(i) =

(
P 2

H,t(i)
PH,t

)−ε

CH,t (B-7)

Re-inserting (B-6) and (B-7) into (B-5) yields the theoretically correct price index

for the domestic consumption bundle

PH,t =
[∫ θH

0
P 1

H,t(i)
1−εdi +

∫ 1

θH

P 2
H,t(i)

1−εdi

] 1
1−ε

(B-8)

Since we also impose Calvo-pricing on the retailers that import foreign varieties, we

obtain demand functions and a price index for imported goods that are analogous to

(B-6), (B-7) and (B-8). What is left to be shown is what prices P 1
H,t(i) and P 2

H,t(i)

are.

B.2 Pricing Decision of the Domestic Firm

Domestic firms face a Calvo-style staggered price setting problem with indexation.

That is, with probability θH firms cannot re-optimize their price and just follow the

indexation rule given by (10). Despite of ex ante heterogeneity of firms we only

consider the symmetric equilibrium in which all firms react identically and set the

same price. That is, firms that cannot re-optimize set

P 1
H,t = PH,t−1

(
PH,t−1

PH,t−2

)δH

(B-9)

and firms that can re-optimize all set the same optimal price which we denote by

P 2
H,t = P ′

H,t. In that case, the domestic goods price index (B-8) becomes

PH,t =


θH

(
PH,t−1

(
PH,t−1

PH,t−2

)δH
)1−ε

+ (1− θH) P ′
H,t

1−ε




1
1−ε

(B-10)

The staggered price setting renders the maximization problem of the firms dynamic.

We must find an expression for the demand faced by a firm for any period t + τ
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when it has last set its price optimally in period t. Any firm sells its output both

domestically and abroad. The relevant domestic demand curve for this case is given

by (B-6). When assuming that the demand from abroad resembles the domestic

demand in a way described by equation (17), the total demand faced by a firm in

period t + τ that has last re-set its price optimally in period t is given by

CH,t+τ |t =

(
P 1

H,t+τ |t
PH,t+τ

)−ε

(CH,t+τ + C∗
H,t+τ )

Applying the indexation rule (B-9) we can replace P 1
H,t+τ |t and obtain

CH,t+τ |t =

(
P ′

H,t

PH,t+τ

(
PH,t+τ−1

PH,t−1

)δH
)−ε

(CH,t+τ + C∗
H,t+τ ) (B-11)

A firm that can re-set its price in period t chooses P ′
H,t such that it maximizes the

present discounted value of profits taking into account the probability of not being

able to re-set prices in the future:

max
P ′H,t

Et

∞∑

τ=0

θτ
HQt,t+τyt+τ |t(i)

[
P ′

H,t

(
PH,t+τ−1

PH,t−1

)δH

− PH,t+τMCt+τ

]

subject to (B-11). The first order condition of the maximization problem can be

written as

Et

∞∑

τ=0

θτ
HQt,t+τyt+τ |t(i)

[
P ′

H,t

(
PH,t+τ−1

PH,t−1

)δH

− ε

ε− 1
PH,t+τMCt+τ

]
!= 0 (B-12)

The derivation of the optimal price setting condition for the retailers is analogous to

the one of the domestic firms.

B.3 Log-Linearizing the Equilibrium Conditions

Euler equation: the log-linearization of (6) is straightforward.

Resource constraint: to linearize (16) we need some preliminary steps. Linearizing

the CPI (4) around a zero inflation steady state in which P = PH = PF yields

pt = (1− α)pH,t + αpF,t (B-13)
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The linearized terms of trade are st = pF,t − pH,t and the law of one price gap is

ψF,t = et + p∗t − pF,t. First differences of the terms of trade imply

∆st = πF,t − πH,t (B-14)

From the definition of the real exchange rate we can infer that it depends on the law

of one price gap and the terms of trade according to

qt = et + p∗t − pt = ψF,t + (1− α)st (B-15)

From (B-13) and (B-14) we find that pt − pH,t = αst, so that domestic CPI inflation

and domestic goods price inflation are related according to

πt = πH,t + α∆st (B-16)

We now go about linearizing the resource constraint (16). In contrast to the domestic

economy, we assume that the the law of one price holds for imports of domestic goods

to the foreign economy, i.e. PH,t = ẽtP
∗
H,t = ẽtP

∗
t . Therefore, the resource constraint

Yt = CH,t + C∗
H,t can be written as

Yt = (1− α)
(

PH,t

Pt

)−η

Ct + ς(ΨF,tSt)η∗Y ∗
t

The parameter ς represents the steady state ratio of exports to GDP in the foreign

economy. Although due to the large open economy assumption it tends to zero, we

still need it for technical reasons, specifically to have a well defined steady state level

of C∗
H . Taking a log-linear approximation to the above equation around the zero

inflation steady state yields in a first step

Y yt = CH [η(pt − pH,t) + ct] + C∗
H [η∗(ψF,t + st) + y∗t ]

From the steady state version of equation (3) we find that CH = (1 − α)C and

CF = αC where CF is the steady state level of exports. Assuming balanced trade in

the steady state we get C∗
H = CF = αC. Plugging this into the resource constraint

we get Y = (1− α)C + αC = C. By dividing both sides of the above equation by Y

and using equation (B-16) we find

yt = (1− α)ct + α[(1− α)η + λ]st + αλψF,t + αy∗t

52



When further assuming that the elasticities of substitution across goods coincide in

both economies, i.e. η = η∗, we get the linearized resource constraint

yt = (1− α)ct + αη(2− α)st + αηψF,t + αy∗t (B-17)

Optimal price setting for domestic firms: taking a log-linear approximation to

(13) and (11) yields a hybrid Phillips curve. Let ΠH,t denote the gross inflation of

domestic goods between t − 1 and t and ΠH,t,t+τ the one between t and t + τ . As

a preliminary step, we divide both sides of the domestic price index (11) by PH,t−1

and rearrange to obtain

Π1−ε
H,t =


(1− θH)

(
P ′

H,t

PH,t−1

)1−ε

+ θHΠδH(1−ε)
H,t−1




So in a zero inflation steady state in which Π = ΠH = 1 it must be that P ′
H = PH

and therefore the steady state real marginal cost are MC = ε−1
ε . We proceed by

dividing the firms’ optimality condition (13) by PH,t−1 (which is in the information

set of t) and using the above definition we obtain

Et

∞∑

τ=0

θτ
HQt,t+τCH,t+τ |t

[
P ′

H,t

PH,t−1
ΠδH

H,t−1,t+τ−1 −
ε

ε− 1
ΠH,t−1,t+τMCt+τ

]
= 0

From (12) we can see that in a zero-inflation steady state yH(i) is well defined and

independent of time. Moreover, the steady state stochastic discount factor is just

Qt,t+τ = βτ . Hence, first order Taylor expansion to the above condition around the

steady state yields

0 = Et

∞∑

τ=0

(θHβ)τ
[
p′H,t − pH,t−1 + δH(pH,t+τ−1 − pH,t−1)− (mct+τ + pH,t+τ − pH,t−1)

]

By rearranging we can express the gap between the optimal and last period’s price as

the sum of expected future marginal costs and a weighted average of domestic goods

price inflation and general CPI inflation

p′H,t − pH,t−1 = (1− θHβ)Et

∞∑

τ=0

(θHβ)τ

[
mct+τ + δHπH,t+τ + (1− δH)

τ∑

k=0

πH,t+k

]
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After some tedious manipulations the above expression can be written as

p′H,t − pH,t−1 = Et

∞∑

τ=0

(θHβ)τ [(1− θHβ)mct+τ + (1− δHθHβ)πH,t+τ ]

or as a first order difference equation

p′H,t − pH,t−1 = (1− θHβ)mct + (1− δHθHβ)πH,t + (θHβ)Et[p′H,t+1 − pH,t]

By taking a log-linear approximation to the domestic goods price index (11) we find

that

pH,t = (1− θH)p′H,t + θH((1 + δH)pH,t−1 − δHpH,t−2)

Subtracting pH,t−1 from both sides and rearranging yields

p′H,t − pH,t−1 =
πH,t

1− θH
− θHδH

1− θH
πH,t−1

When inserting this into the above difference equation and collecting terms we get

the hybrid Phillips curve

πH,t − δHπH,t−1 =
(1− θH)(1− θHβ)

θH
mct + βEt[πH,t+1 − δHπH,t] (B-18)

Marginal costs: To find an expression for the real marginal costs in terms of the

other variables we assume that the labor market is in equilibrium and plug the

households optimal labor condition into the expression for marginal costs. A log-

linear approximation is then

mct = ϕnt + pt − pH,t − εa,t + σ(1− h)−1(ct − hct−1)

Substituting for nt from the production function and using equation (B-16) real

marginal cost are given by

mct = ϕyt − (1 + ϕ)εa,t + αst + σ(1− h)−1(ct − hct−1) (B-19)

Optimal price setting for domestic retailers: Again, we can proceed exactly

analogous as when linearizing the optimal price setting condition for domestic firms.

Because of zero-inflation in the steady state it must be that the steady state law

of one price gap is ΨF = (ε − 1)/ε. A log-linear approximation to the optimality
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condition (15) then yields the difference equation

p′F,t − pF,t−1 = (1− θF β)ψF,t + (1− δF θF β)πF,t + θF βEt[p′F,t+1 − pF,t]

From the log-linear approximation to the import price index one can derive

p′F,t − pF,t−1 =
πF,t

1− θF
− θF δF

1− θF
πF,t−1

Combining the last two equations then yields a hybrid Phillips Curve for import price

inflation of the form

πF,t − δF πF,t−1 =
(1− θF )(1− θF β)

θF
ψF,t + βEt[πF,t+1 − δF πF,t] (B-20)

Uncovered interest rate parity: When assuming that the function governing the

risk-premium is of the form φt+1 = exp(−χAt − εs,t), the log-linearization of (7) is

straightforward and directly yields (25).

Budget constraint: Recall that the domestic bond market clearing requires Dt =

0 ∀t. Moreover, we assume that the government transfers Tt are chosen exactly so

as to neutralize the distortions stemming from monopolistic competition. It proves

convenient to introduce the profits from the final goods producing firm (this does

not change anything because it is perfectly competitive and thus makes zero profit):

Πfg,t = PtCt−PF,tCF,t−PH,tCH,t. Settling profits with the lump sum transfer yields

Πfg,t + ΠH,t + ΠF,t + Tt = PtCt −WtNt + ẽtP
∗
H,tC

∗
H,t − ẽtP

∗
t CF,t

Plugging this into the budget constraint yields

ẽtBt = ẽtBt−1(1 + i∗t−1)φt + ẽtP
∗
H,tC

∗
H,t − ẽtP

∗
t CF,t

Since domestic goods are sold at the law of one price abroad we have PH,t =

ẽtP
∗
H,t. When dividing the whole equation by PtY , making use of the definition

At = ẽtBt/(PtY ) as well as the demand functions (3) and (17), and applying the

definition of the real exchange rate we obtain

At = At−1
q̃t

q̃t−1

(1 + i∗t−1)
Π∗t

φt +
1
Y

((
PH,t

Pt

)
ς (ΨF,tSt)

η∗ Y ∗
t − q̃tα

(
PF,t

Pt

)−η

Ct

)

where Π∗t is the gross foreign inflation rate. Since net-foreign debt can take on

negative values, we will linearize it (instead of log-linearizing). All other variables
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are log-linearized and the conventional notation introduced above is used. Combining

the Euler equation and uncovered interest parity condition in the steady state yields

1/β = (1 − i∗)/Π∗. Because we further assume that net-foreign debt in the steady

state is zero, all log-linearized variables of the first term of the right-hand-side in

the above equation drop out. We can therefore concentrate on the log-linearization

of the second term. The real interest rate in the steady state is equal to unity.

Imposing balanced trade we have found in the derivation of the resource constraint

that C∗
H = ςY ∗ = αC = αY . The log-linear form of the budget constraint can

therefore be written as

at = 1
β at−1 + α (pH,t − pt + η(ψF,t + st) + y∗t − qt + η(pF,t − pt)− ct)

Note that we imposed η∗ = η. From the resource constraint we know that

y∗t − ct =
yt − ct

α
− η(2− α)st − ηψF,t

In addition, since pt = (1 − α)pH,t + αpF,t we can write pH,t − pt = −αst and

pF,t − pt = (1 − α)st. Recalling that the real exchange rate can be expressed as

qt = ψF,t + (1− α)st, we can substitute this into the budget constraint and obtain

at = 1
β at−1 + α

(
yt − ct

α
+ ηst − ψF,t − st + η(1− α)st − η(2− α)st

)

Collecting terms and rearranging yields the log-linearized budget constraint (26).
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