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Abstract
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1 Introduction

During the past two decades, many countries have moved their monetary policy
regime to inflation targeting.! As described by Svensson (2000) inflation targeting
is characterized by (1) an explicit quantitative inflation target, either an interval or
point target, (2) an operating procedure that uses a conditional inflation forecast
as an intermediate target variable, and (3) a high degree of transparency and ac-
countability. Furthermore, as argued in Svensson (1999), inflation targeting can be
modeled as minimization of a specific loss function of the central bank. The operating
procedure ensures that the first-order conditions of this minimization problem are
approximately fulfilled. The role of transparency in this case is to what extent outside
observers can verify if those conditions are fulfilled. A high degree of transparency
therefore increases the incentives for the central bank to minimize the assigned loss
function. This procedure results in an endogenous reaction function, that is the mon-
etary policy instrument is expressed as function of all relevant information.

It has become a standard in empirical macroeconomics to use the short-term interest
rate as the policy instrument and model the reaction function in the spirit of Taylor
(1993). In the original version of the so called Taylor-rule, the short-term interest
rate depends solely on current inflation and the output gap. In general, however,
the reaction function will depend on much more information, that is in principle, it
will depend on anything that has informational content for the central bank’s condi-
tional inflation forecast. In the case of open economies, it is therefore natural to ask
whether variables such as the exchange rate or foreign interest rates should also be
taken into account when formulating monetary policy.

In recent years, there has been extensive research on this question, namely how mon-
etary policy should be best conducted in open economies that face movements in the
nominal and real exchange rates. This issue has become particularly interesting in
the aftermath of the breakdown of many fixed exchange rate regimes in the 1990’s.?
As Taylor (2001, p.267) puts it: “An important and still unsettled issue for monetary
policy in open economies is how much of an interest-rate reaction there should be

to the exchange rate in a monetary regime of a flexible exchange rate, an inflation

! Among them are Australia, Canada, Finland, New Zealand, Sweden and the UK. Switzerland consti-
tutes a special case in that the Swiss National Bank does not consider itself an inflation targeter. Their
main argument is that they do not commit to reach an inflation target within a specific horizon. For the
purpose of this paper however, the differences between Swiss monetary policy implementation and inflation
targeting are of definitional nature.

2For a comprehensive review of the literature on fixed exchange rate regimes see Garber and Svensson
(1995).



target, and a monetary-policy rule.” An early contribution on this debate was made
by Obstfeld and Rogoff (1995). They propose a “rule of thumb” calling for a relaxing
of monetary policy following a substantial appreciation of the real exchange rate.
Since an appreciation in real terms makes foreign goods relatively cheaper compared
to domestic goods, domestic aggregate demand is contracted through a reduction in
net exports. As a consequence, interest rates should be lowered in order to mitigate
the contractionary effects on domestic aggregate demand. Although intuitive, this
rule of thumb remains speculative as it relies to some extent on partial equilibrium
reasoning.

To gain meaningful insights on this issue, it is of interest to answer the question within
the framework of a general equilibrium model. Several theoretical studies have done
so. The approach termed as “new normative macroeconomic research” by Taylor
(2001) has been used overwhelmingly to assess this issue. Roughly speaking, this
means that the researcher builds a macroeconomic model including a monetary pol-
icy rule. The model is then solved using one of the numerous numerical algorithms®
and the properties of the variables examined. Based on a loss-function, statements
about the optimal policy rule can be made. The general finding is that including
the exchange rate to the policy rule does not significantly improve, and sometimes
even worsens, macroeconomic performance. Ball (1999) studies a simple small open
economy model with sticky prices. He finds that the optimal policy parameters for
the exchange rate are non-zero and quite large in size. However, macroeconomic
performance measured by the volatility of inflation is only improved very modestly
compared to a policy rule excluding the exchange rate. Using a different model
with forward looking agents and more explicit microfoundations, Svensson (2000)
performs a similar exercise. He also finds quite sizable optimal parameter values for
the exchange rate in the policy rule. His simulations show that the central bank
can indeed lower the volatility of inflation when following this rule. However, this
comes at the expense of output variability because the variance of output increases.
Another study of this class of policy rules is carried out by Taylor (1999). Using a
seven-country model with France, Germany, and Italy joined into a single currency
union representing the European Monetary Union and with Canada, Japan, the UK,
and the US conducting their own monetary policy, he simulates a policy rule that
includes a reaction to the exchange rate for the European Central Bank. Compared
to a simple rule excluding exchange rate, he finds that the exchange rate reaction

leads to a better performance for some countries in Europe, but to a poorer perfor-

3 Among them are e.g. King and Watson (1998), Uhlig (1998), Klein (2000), or Sims (2002), all building
on the principle idea of Blanchard and Kahn (1980).
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mance for others. In summary, the above mentioned papers claim that the addition
of the exchange rate to a standard Taylor-rule may worsen, or at best, improves only
insignificantly the macroeconomic performance. Collard and Dellas (2002) even find
evidence that including the exchange rate can have substantial negative effects on
macroeconomic performance and welfare.

Most of this literature is based on calibrated dynamic stochastic general equilibrium
(DSGE) models. That is, formal econometric methods are not invoked. Taking a
first step towards filling this gap, Lubik and Schorfheide (2007) estimate a small scale
DSGE model of a small open economy using a Bayesian approach. They contrast this
full information system equation method to a single equation instrumental variables
estimation, emphasizing the advantages of the former. The main goal is to investi-
gate whether central banks in the UK, Canada, New Zealand and Australia actually
target exchange rates. They find that the Bank of Canada and the Bank of Eng-
land do, whereas there is no evidence for a reaction in New Zealand and Australia.
The question of optimal policy is not adressed in the paper. Justiniano and Preston
(2008) estimate a more elaborated small open economy DSGE model using data for
Canada, Australia, and New Zealand. They evaluate optimal policy by minimizing a
weighted objective of output and inflation variability over a set of generalized Taylor
rules. They find that the optimal coefficient on the exchange rate is zero.

The aim of our paper is twofold. On the one hand, we follow Lubik and Schorfheide
(2007) by empirically assessing whether the Swiss National Bank targets the nominal
exchange rate in its policy rule. On the other hand, we address the question whether
it is optimal for the central bank to react to movements in the nominal exchange rate
by performing some policy experiments similar to those of Justiniano and Preston
(2008). Methodically, we extend the analysis by employing a method that is capable
of taking possible misspecification of the underlying theoretical model into account.*
The method is also based on full information, Bayesian techniques. In a first step we
therefore solve a medium scale small open economy DSGE model. Then, when taking
the model to the data we use the approach proposed by DelNegro and Schorfheide
(2004), which can roughly be described as confronting the DSGE model with a more
general statistical model, a vector autoregressive model (VAR). The DSGE model is
interpreted as prior information about parameter combinations in the unrestricted

VAR. This prior information is augmented with information contained in the data,

4Lees, Matheson, and Smith (2007) also use this method to re-estimate the model of Lubik and
Schorfheide (2007). They do investigate the question of optimal policy. However, they do not test whether
the coefficients on exchange rates are positive. Furthermore, their technical implementation seems to be
based on the model without taking misspecification into account.



that is, with the likelihood of the VAR. The method allows to express confidence in
the exact restrictions of the DSGE model by increasing the tightness of the prior.
The resulting estimated model, the DSGE-VAR, is a precise description of the data.
Most importantly, depending on the tightness of the prior, it partly has a structural
interpretation. Intuitively, when doing a policy experiment, the structural DSGE
model predictions are ‘corrected’ by a non-structural component, which is policy in-
variant by assumption. The less confidence the researcher has in his DSGE model,
the more weight is given to this statistical, only data-based correction.

We find that the Swiss National Bank did target the exchange rate. The posterior
odds ratio overwhelmingly favors a model with the exchange rate included in the
Taylor rule. Moreover, our optimal policy exercises shows that a non-zero reaction
of the policy instrument to the nominal exchange rate lowers volatility of output and
inflation. This is at odds with the findings of Justiniano and Preston (2008).

The remainder of the paper is organized as follows. In section 2 we present the
theoretical model. Section 3 describes the empirical method and section 4 the im-

plementation. Results are presented in section 5. Finally, section 6 concludes.



2 The DSGE model

The theoretical model is based on Monacelli (2005) and follows closely the speci-
fications introduced by Justiniano and Preston (2008). The model consists of two
countries, one being the small open economy and the other the rest of the world. The
small open economy is populated by an infinitely-lived, representative household that
consumes, supplies labor, and invests in either domestic or foreign one-period bonds.
The interest rate on foreign bonds is subject to a risk-premium. On the production
side of the economy, there is a sector of a continuum of monopolistically competitive
firms producing a variety of domestic goods and selling them both domestically and
abroad. There is also a monopolistically competitive retail sector in which a contin-
uum of retailers import differentiated products from the rest of the world and sell
them on the domestic market. Both sectors are assumed to be subject to a staggered
price setting problem a la Calvo. As a result of this setup, imports are subject to lo-
cal currency pricing, i.e. the law-of-one price is violated in the short-run. There is in
principle another production sector in the economy: the final goods sector. However,
it will not be modeled explicitly because it can be thought of as a perfectly competi-
tive firm making zero profit that buys domestic and foreign varieties and turns them
into a final consumption good that is sold to the household. The monetary policy
instrument is the short-term interest rate, so we assume a generalized Taylor-type
policy rule. The rest of the world is large compared to the small open economy.
Therefore, although there is trade between the two countries, the imported and ex-
ported quantities are negligible relative to total foreign output. As a consequence,
all foreign variables are taken as exogenous by the domestic economy.® Moreover we
assume that foreign households are restricted from holding domestic bonds. In what
follows, we briefly characterize the decision problems of each sector for the small
open economy. Then we describe how the rest of the world is modeled. Finally, we
summarize the linearized model economies. For the details of the derivations please

consult Appendix B.

2.1 Domestic Household

The household problem is standard. The representative agent maximizes lifetime

utility, subject to a budget constraint. She consumes, invests, and supplies labor to

5There is a subtlety to this point: technically, the model is a semi-small open economy model as the
domestic producers have some market power. We circumvent this issue by assuming that the law of one
price holds for those products.



the domestic firms. The utility function is specified as follows
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where €, is a preference shock and H; = hC;_1 is a habit formation term that is

taken as exogenous by the household. Aggregate consumption is given by
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where Cp; and Cr; are the bundles of domestically produced and imported goods,
respectively.® They are themselves aggregates of the different varieties. The elasticity
of substitution between domestic and foreign goods is given by n and « is the weight
of foreign goods relative to total consumption. In other words, « is a measure for
trade openness. Let D; denote bonds denominated in domestic currency and By

bonds denominated in foreign currency. Then, the period budget constraint is given
by

P.Cy+ Dy + By = Dy_1(1 + 1) + &Bi1 (1 +if_1)¢n
+WiNy + s + ey + T

(2)

where é; denotes the nominal exchange rate’, T; is a lump-sum transfer from the
government, and Ily; and Ilp; are profits from the domestic firms and retailers,

8 in order to obtain

respectively. The domestic household must pay a risk-premium
funds from abroad. We follow Benigno (2001) and Schmitt-Grohé and Uribe (2003)
by assuming that the gross premium ¢, is a function of aggregate net foreign debt
B;_1 and a random shock e5;. It proves convenient to express the risk premium
in terms of the real quantity of net foreign debt denominated in domestic currency
units as a fraction of steady state output. Formally, we let A, = & B;/(Y P;) and
141 = f(As, e5¢) with fi1(-) > 0, where £5¢ is a risk-premium shock.

The household’s optimization problem requires that the expenditures for domestic

6The aggregator in (1) can be interpreted as an Armington-production function of the representative
final goods firm. As described above, we do not explicitly model this sector because it can be easily
incorporated into the household problem.

"In our notation, & is the domestic price of foreign currency.

8The risk-premium is introduced mainly for technical reasons. One the one hand, this constitutes a
convenient way to avoid the unit-root problem for consumption characterizing many small open economy
models (see Schmitt-Grohé and Uribe, 2003, for more Details). On the other hand, it allows us to introduce
an economically interpretable shock that we need for the estimation of the model.



and foreign goods are cost-minimizing for any level of aggregate consumption. This

implies the following demand functions for domestic and foreign goods

PHt -n PFt -n
Cr,=(1—- — C Cpy = —= C 3
Hyt ( @) ( P, > t Ft =« P, t (3)
together with the theoretically correct consumer-price index

_1
P, =[(1—a)Py,"+ aPp,"™0 (4)

where Py and Pp; are the prices indices for the domestic and foreign consumption
bundles. Given the demand functions (3), the household maximizes its lifetime utility
subject to the budget constraint (2) by choosing optimally how much to consume,

work, and invest. This yields the following set of optimality conditions:

1%
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with A\; = £,:(Cy — hCy—1)~7 being the marginal utility of consumption. Equation

(5) describes the optimal labor supply schedule, equation (6) is the standard Euler

equation, and equation (7) is an arbitrage condition restricting the relative move-

ments of domestic and foreign interest rates and changes in the nominal exchange

rate.

2.2 Domestic Firms

This section describes the main equations of the profit maximization problem for the
domestic firms. There is a continuum of monopolistically competitive domestic firms
of mass 1. Each firm 4 produces a differentiated good using labor as single input.

The individual and aggregate production functions are given by

1 57 =1
yir1(6) = Eas Ni(G) and Vi = ( / yHyt(i)eldi) (8)
0

where ¢ is the elasticity of substitution between the different varieties and &, rep-
resents technological innovation that is common to all firms. Because the goods are

imperfect substitutes, each firm has some degree of monopolistic power when setting



prices. In doing so, firms take into account that they face downward sloping demand
curves. The domestic demand for variety ¢ that emerges from the household problem
is given by

Cueti) = (220) " e, )

In words, this means that the quantity demanded of good 7 varies inversely with its
price Pp+(i). We assume staggered price setting & la Calvo where 6y denotes the
probability that the firm cannot reset its price. The implied price duration is then

1/(1 — 0g). Firms that cannot re-optimize follow an indexation rule of the form

PH,t1>6H (10)

Prr4(i) = Pry—1(1) (PH ,
t—

That means, these firms automatically adjust prices taking past inflation of domestic
goods prices into account. The parameter dz indicates to what degree they react
to past inflation. Although firms are heterogeneous ex ante, we will only consider
the symmetric equilibrium in which all firms behave identically and can consequently
omit the index 7 in what follows. Firms that can reset their prices in period ¢ therefore
all set the same one which we denote by P}Lt. It can be shown that the price index

for domestic goods evolves according to

P EH l—e| 1-¢
Pie= |(1=0) Phy ~ +6n (PH,H (PH’“) ) (11)
Ht—2

A firm choosing the optimal price in period ¢ maximizes the present discounted value
of profits, taking into account the probability of not being able to re-set prices in the
future. Firms sell their goods both domestically and abroad. When assuming that
foreign demand is of the same functional form as domestic demand (9), the demand
curve faced in period t 4 7 for a firm that last re-set prices optimally in period ¢ and

henceforth just adjusted prices according to the indexation rule (10) is given by

P! P S\ "¢
Ht H,i+7—1
Cragir = ( . ) (Crtsr+ Cirsr) (12)
Pyiir \ Pri—
The expected discounted profit for a firm that can re-optimize its price in period ¢ is
given by
9] 0
Prjpyr—1\™"
E, Z 01 Qt,t++Crirrt | Py (PHTl — Prytr MCyyr
t_
7=0 ’
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where MCy = Wy/(Put€ay) are real marginal costs and Q4 is a time-dependent
stochastic discount factor. Under the assumption that households have access to a
complete set of state-contingent claims, Q¢4+, is the pricing kernel of such a security
maturing in ¢t + 7 and is given by Qti4r = B7Appr/Ar with Ay = A\¢/P,. Since
the household is the owner of the firms and receives the profits, it directs firms to
make their decisions based on the households intertemporal rate of substitution. The

optimal price resulting from the firm’s maximization problem is given by

p_ € >0 0 05 B [Qu4rChipr(t Pr o M Ciy 7 |
Ht™ 1= 07 E, [Qtt4+Chi it (Prpr—1/ Prig—1)7 ]

(13)

2.3 Domestic Retailers

The domestic retailers import foreign differentiated goods for which the law of one
price holds at the docks. However, we assume that also the retail sector is charac-
terized by monopolistic competition so each retailer has some degree of price setting
power. In other words, imports are subject to local currency pricing which gives
rise to deviations from the law of one price in the short run. Analogous to the do-
mestic goods producing firms, retailers face a staggered price setting problem with
indexation. The price stickiness parameter for this sector is denoted by 0r and the
indexation parameter by dr. The indexation rule and the price index for imports
can then be expressed along the lines of (10) and (11). When focussing again only
on the symmetric equilibrium in which all retailers behave identically, the demand
faced by a retailer in period t + 7 conditional on having last re-optimized its price in

period t is given by

Ph. (Pri 1 \°F\
CFH”:( Fit < Pt 1> ) Crosr (14)

Priir \ Pri—

The expected discounted profit for a retailer that can re-set its price in period ¢ is
given by

= Pr 1\ °F
T / ,t+7'— ~ *
E; Z 0pQt t+7CFqre | Pry (P) — e Ppy s
= Fit—1

The optimal price results from maximizing this expression with respect to Py, ,, sub-

ject to the demand (14) and is given by

o0 ~ *
) e > om0 OpEL [Qt’t+7'CF,t+T|tet+TPF,t+T:|

Bt e > 0 00 B [QuiarCrpprit(Prgr—1/Pri—1)°F ]

(15)
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2.4 Monetary Authority

As already mentioned, we assume that the monetary policy instrument is the short
term interest rate 7;. We consider a policy rule for the central bank in which it takes
information on current inflation, output, output growth, changes in the nominal ex-
change rate and past interest rates into account. We present the explicit specification

in the summary of the linearized model equations below.

2.5 Market Clearing

The market clearing condition for the domestic economy requires
Yui = Cuy+ Clpy (16)

where the left-hand-side is the supply of domestic goods and the right-hand-side is
composed of domestic demand and export demand from the rest of the world. Fol-
lowing Kollmann (2002) we assume that export demand resembles domestic demand

given by (3) and is given by

* P};t o *
o Y, (17)
t

where we allow the foreign elasticity of substitution n* to potentially differ from the
domestic counterpart 7.

We restrict foreign investors from holding domestic bonds. Domestic bond market
clearing therefore requires that net supply D; = 0 for all £. The net supply of foreign
bonds is zero as well. The reason for this is that number of domestic investors holding

foreign debt is negligible relative to foreign investors.

2.6 The Foreign Economy

Instead of just assuming exogenous driving processes for all foreign variables, we want
to express also the foreign variables as driven by fundamental economic innovations.
We therefore take the model for the small open economy and - loosely speaking -
solve it for the closed economy limiting case. In what follows, we point out the main
differences. All foreign variables and parameters will be denoted by a *-superscript.

Since the foreign economy is very large, trade flows to and from the domestic economy

9The functional form of (17) is assumed to be the same as in (3). The parameter ¢ represents the share
of foreign imports to total foreign output. Although it is going to zero, we technically need it to have a
well-defined steady state for C7;.

12



are negligible compared to total foreign economic activity. Technically, this means
that a* tends to zero. As a consequence, foreign consumption is given by C} = }7t
which implies that the foreign consumers price index is entirely determined by foreign
goods prices P = P}}t. Foreign investors do not face a risk premium so the return
on foreign bonds for them is simply 1 + i;. The price setting problem for foreign
goods producing firms is exactly the same as for domestic firms. Since imports from
the small open economy constitute a negligible share of total income, there is no
foreign import sector. We assume that the foreign monetary authority also follows a

Taylor-type rule without the inclusion of the exchange rate.

2.7 Equilibrium

The equilibrium is defined as a vector of prices { P}, P Pr g Wi €147, Pr iy Wit
together with a vector of allocations {CY, T Cre Y N BE, Dy, Y™} such that
equations (1)-(17) are satisfied. Before proceeding to the log linear approximation
of the equilibrium conditions, let us define the real exchange rate as ¢ = &P/ P,
and the terms of trade for the domestic economy as S; = Pp;/Pp;. Furthermore,
it will be convenient to define ¥, = é,P;/Pr; which according to Monacelli (2005)
represents short run deviations from the law of one price. It will subsequently be

referred to as the law of one price gap.

2.8 Log-Linear Approximation to the Model

For the estimation of the model we derive a log-linear approximation of the equilib-
rium conditions around a deterministic steady state. The steady state of the model is
characterized by zero inflation and balanced trade. All variables are to be interpreted
as log-deviations from the steady state. We use small letters unless otherwise noted,
ie. z; = log(X;/X).1® We list the equations of the linear approximation. For the
derivation we refer to the appendix.

The Euler equation (6) can be linearized straightforward to

1—h 1—-h

¢t — hei—1 = Ey(ciq1 — hey) — (i — Eymigr) +

(egt — Eteges1)  (18)

The linearized domestic goods market clearing condition is given by

ye = (1 —a)er + an(2 — a)s; + anyr + ayy (19)

0Exceptions are the nominal and real exchange rate which are defined as e; = log(é;/¢) and ¢ =
log(g:/q) as well as the shocks e, = log(&,,¢/€x).

13



where the log of the law of one price gap is ¥r; = e; +p; — pr+ and the log terms of
trade are s; = prt — pH,¢. Since for the estimation we use data on the real exchange
rate, we must relate the former variable to the real rather than the nominal exchange

rate. The terms of trade and the real exchange rate are related according to
G =er+p; —pr=vrs+ (1 —a)s (20)

Since we also use data on the import and export price deflators rather than the

indices themselves, we take first differences of the terms of trade and obtain
Asy = TFt — THt (21)

A log-linear approximation to the domestic firms’ optimality condition (13) and the

price index for domestic goods (11) implies the following Phillips curve

THt — OHTHt—1 = BE(TH 11 — OuTH) + KEmct (22)

(1=0m)(1=0:p)
0

m and the real marginal costs are given by

where Ky =

mcy = Pyt — (1 + @)Ea,t + as; + (¢t — hee—r)

o
1-h
Similarly, a log-linear approximation to the retailers’ optimality condition (15) yields

another Phillips curve

TEe — OpTE—1 = BE{(Tri1 — OFTEe) + KFUR: + Ecpt (23)

where kp = %ﬁw. We have augmented the Phillips curve with a cost-push

shock €.+ to capture inefficient variations in mark-ups. Domestic CPI inflation and

the domestic goods price deflator are related according to
Tt = TH + CkASt (24)

Linearizing the uncovered interest rate parity condition (7) is straightforward and

together with the definition of the real exchange rate yields

iy —if = Eymy — Bymig + EyAqn — xag — sy (25)

14



The parameter y captures the elasticity of the risk premium with respect to net

foreign debt. A log-linear approximation to the budget constraint yields

1
e+ ap = Batfl — (st +vre) +y (26)

where a; = log(é;B;) —log(P;Y) is the log real net foreign asset position as a fraction
of steady state domestic income. Monetary policy enters in the model by assuming

that the central bank follows a generalized Taylor rule of the form

it = Piti—1 + Ve + Yy + YAy Ay + Yeler + g (27)

€M, is a monetary policy shock. The foreign economy is described by an Euler

equation
yi —hyiq = Et(yt+1 —hyp) — e (i — Eymiq — Egt T Et5g,t+1)a (28)
a Phillips curve
= 8w = B Ey(mi, — 0" ) + KPmcy, (29)

with * = (1 — 6*)(1 — 6*3*)/6* and the real marginal costs given by

o
1—h*

mep = ¢y — (14 ¢ )eqs + (v = P yr1),

and a Taylor rule
it = piii_1 +Urm VUL + VA DY +Ensy (30)

Equations (18)-(30) constitute a system of linear rational expectations difference
equations in the 13 variables {ct, ys, it, ¢, St, T, THt, TEt, VES, 01, Y7 547, 77 b When
augmented by driving processes for the exogenous shocks, this system can be solved
by means of a numerical routine. We will assume that the monetary policy shocks
{emt, €4} are distributed id and that the remaining shocks follow univariate AR(1)

processes given by
. /
€zt = Pzfxt—1 + €xt with E[6I7t€x,t] =0z

When solving the system of difference equations, we seek for a representation of the
endogenous variables in term of the exogenous shocks. We use the method of Sims

(2002) and therefore define a N-dimensional state vector of endogenous variables

15



S, a vector of fundamental shocks &, and a M-dimensional vector § that contains

all model parameters. The solution of the linearized system takes the form

Sy = G(0)Si_1 + H(0)E,

where the matrices G(6) and H () are complicated non-linear functions of the pa-
rameter vector 6.'2 It is important to see that although these matrices are large in
dimension - G(#) has the dimension N x N - they are restricted through the model

such that the unknown number of parameters M is small.

"n our case, N = 26. The state vector S; is composed of the 13 endogenous variables, the 6 exogenous
shocks following an AR(1) process, and, because we are using the Sims-algorithm, 7 expectational variables.

12We will restrict our analysis to the parameter space which implies a unique stable solution. For a dis-
cussion of indeterminate stable solutions in linear rational expectations models, see Lubik and Schorfheide
(2004).
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3 Estimation Method: The DSGE-VAR Ap-
proach

In this section, we introduce the estimation method that will be used for our empir-
ical analysis. It is referred to as the DSGE-VAR approach elaborated by DelNegro
and Schorfheide (2004). First, we describe the general idea and discuss the main
concepts intuitively. Then we show how to formally implement the idea. This in-
volves the definition of an empirical model in order to derive the likelihood function
and the formal definition of the prior distribution. We proceed by showing how a
Markov-Chain Monte-Carlo (MCMC) algorithm can be used to simulate the poste-
rior distribution of the DSGE-VAR and discuss how to choose the optimal weight
of information from the DSGE model in the estimation. Finally, we describe how
structural shocks can be identified using DSGE model restrictions and discuss how to
do policy experiments with the estimated model. Much of the subsequent discussion
follows closely DelNegro and Schorfheide (2004), DelNegro and Schorfheide (2006),
and An and Schorfheide (2007).

3.1 General Idea

There is a close relationship between DSGE models and VARs: The DSGE model
described in Section 2 is equivalent to a VAR(1) in the variables S;. The parameters
are constrained by the restriction functions G(0) and H(#). Let X; be a subset of
S; that contains variables that can be observed. A general result is that X, still
has a VAR representation. However, the number of lags to be included is possibly
infinite. The VAR(oo) can be approximated by a VAR of finite order p. The p first
autocovariances of this approximation are equal to the first p autocovariances of the
VAR(oc0). It follows that the first p autocovariances of the DSGE model are equal
to those of a restricted VAR(p). Hence, up to an approximation error in high order
autocovariances, estimating the DSGE model is equivalent to estimating a restricted
VAR(p). By increasing p, one can successively match autocovariances of higher orders
and reduce the approximation error. Importantly, the restricted VAR inherits the
properties of the DSGE model: Both are highly stylized versions of the real world by
construction. Therefore, from a quantitative point of view, unrestricted VARs often
have superior properties, suggesting that the restrictions implied by DSGE model
are at odds with the data. On the other hand, unrestricted, non-structural VARs are
not directly useful for policy analysis.

The DSGE-VAR approach of DelNegro and Schorfheide (2004) provides a solution
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to this dilemma. The key idea is the following: The researcher is aware of the fact
that some simplifications in the modeling strategy potentially induce deviations of
the model implied moments from the moments of the data. Still, she beliefs that
the DSGE model contains the mechanisms which are important for policy analysis.
Hence, it is useful to imbed the restrictions into the empirical model, but at the same
time allow for deviations in order match the properties of the data more closely. The
idea can be implemented using a Bayesian approach. In Bayesian analysis, the goal
is to derive the distribution of the parameters using information contained in the
data and prior beliefs about the parameters. The information contained in the data
is described by the likelihood function of a model which is supposed to fit the data
well. DelNegro and Schorfheide (2004) choose a VAR for this purpose and exploite
the similarities to DSGE models described above. The information contained in
the likelihood function is augmented with information from prior beliefs. Hence,
it is natural to interpret the DSGE model restrictions as prior beliefs about the
relationship of parameters in the VAR. Scepticism about the concrete implications
of these beliefs can be introduced using a prior distribution that also assigns mass
to VAR parameter combinations which are not exactly satisfying the restrictions.
The degree of confidence in the model implication is higher if most of the prior mass
is very close to the DSGE restrictions. If the prior distribution is degenerate in
the sense the there is mass only at the exact restrictions, the fully restricted VAR
approximation to the DSGE model is estimated. If the mass is rather spread, the
researcher does not strongly belief in the restrictions implied by the DSGE model.

In the limiting case of equally spread mass, an unrestricted VAR is estimated.

Dummy observation interpretation: The way DelNegro and Schorfheide
(2004) set out the prior distribution has the following intuitive interpretation: The
DSGE model is used to generate a sample of ‘dummy observations’. These simulated
artificial observations are added to the sample of observed data and the VAR is es-
timated on the augmented sample. How much the estimates are influenced by the
DSGE model restrictions depends on the relative size of the simulated and the actual
sample. When the sample of simulated observations is small relative to the actual
sample, the estimates are not heavily restricted by the DSGE model. Increasing
the size of the artificial sample imposes the restrictions implied by the DSGE model
more tightly. For an artificial sample of infinite size, the restrictions of the DSGE
model are fully imposed. We will parametrize the tightness of the prior as the ratio
of the sample size of artificial data relative to the actual sample size and denote it by

A. This allows to choose how much the estimates are influenced by the restrictions
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implied by economic theory in a gradual way.

Updating the DSGE model parameters: One advantage of the DSGE-VAR
approach is that the deep DSGE model parameters are estimated jointly with the
VAR parameters. The intuitive description above is based on a given set of deep
parameters in the DSGE model. However, the DSGE model parameters are rarely
known with certainty. The researcher may have some uncertain a priori beliefs about
their values. Hence, a prior distribution can be placed on the parameters to model the
uncertainty. Then, a hierarchical prior can be constructed as follows: The prior for
the VAR coefficients given a set of deep structural parameters is multiplied by a prior
for these ‘auxiliary’ parameters. Now, since the model parameters appear in the prior
distribution, they are updated with sample information via Bayes’ theorem. The two
limiting cases are illustrative for this (following Propositions 1 and 2 in DelNegro and
Schorfheide, 2004): If the number of dummy observations goes to infinity, that is, if
all the prior mass is located at the DSGE restrictions, only the deep DSGE model
parameters are free to adjust. As already mentioned, this amounts to estimating a
fully restricted VAR approximation to the DSGE model. If the number of dummy
observations is small relative to the actual sample size, but both samples are large,
the deep parameters are chosen such that a weighted discrepancy between moments
implied by the unrestricted VAR and the DSGE model is minimized.!3 That is, the
deep parameters are updated in such a way that the unrestricted moments of the

data are matched as close as possible.

Optimal weight of the prior: So far, we have left open the question of how
the tightness of the DSGE prior, that is, the optimal size of the sample of dummy
observations, should be chosen. A natural way in our Bayesian framework is to
derive the posterior probabilities of the DSGE-VAR model for different values of
the tightness parameter A. The posterior model probabilities essentially tell what
the probability of a certain tightness is. Assuming a quadratic loss function of the
decision maker, one would use a weighted average over the set of considered weights
to calculate the statistics of interest. In practice, one often uses only the model
with the highest posterior probability. There is a decision-based justification of this,
assuming a more peculiar loss function. However, if the grid of weights for which
the DSGE-VAR is estimated is not very fine, the weight of DSGE-VAR with the
highest probability will be almost one anyway. That is, there is no relevant difference

between the theoretically optimal choice and the practice of choosing the model with

B The weight depends on the relative size of artificial to actual data.
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the highest posterior probability when the underlying loss function is quadratic.

Based on posterior model probabilities, it is also possible to evaluate the degree of
misspecifiation in the DSGE model. If the optimal weight is very low, the restrictions
in the DSGE model are shown to be at odds with the data. If the optimal weight is
high, theory helps improving the accuracy of the estimates. However, this evaluation
will remain vague in the sense that there is nothing like a ‘critical value’ above which
one can say that the DSGE model is particularly good. The fundamental reason for
this is that it is not clear what the optimal non-structural reference model would
be. A classical VAR(p), corresponding to zero weight of the DSGE prior hardly
is the optimal model, even if the DSGE model is meaningless. A non-structural
Minnesota style prior would help to get better model probabilities as well as a superior
forecast performance. A further symptom of the problem will become apparent in
our application. Depending on the choice of the number of lags p, the optimal weight
varies: the higher p, the higher is the optimal weight. That is, the more restrictive

the reference model is, the less prior information has to be induced.

Identification of shocks based on DSGE model restrictions: The map-
ping between structural shocks in the economy and the dynamic responses of the
VAR variables to these shocks is not identified only by using information contained
in the moments of the data. One has to use additional restrictions to relate the co-
variance matrix of the residuals to the structural shocks. A standard choice is to use a
Cholesky decomposition of the covariance matrix of the residuals. This corresponds
to timing restrictions: Some variables are assumed not to respond contemporane-
ously to certain structural shocks. The ordering of variables in the decomposition
is of fundamental importance for the results, but usually ad-hoc and not justified
by economic theory. In contrast, the DSGE-VAR allows to use economic theory to
identify the shocks. Key is to recognize that in the DSGE model, the shocks are
exactly identified. That is, there is a unique transformation of the Cholesky decom-
position of the covariance matrix of the residuals in the DSGE model to the true
mapping. The idea to identify the shocks in the DSGE-VAR is to transform the
Cholesky decomposition of covariance matrix of the DSGE-VAR residuals with the
unique transformation inferred from the DSGE model. The mapping from the shocks
to the DSGE-VAR residuals will deviate from the mapping in the DSGE model if
the implications of the DSGE model for the covariance matrix of the residuals are
different from the actual covariance matrix in the DSGE-VAR.
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Policy analysis in the DSGE-VAR framework: A central issue is how
the DSGE-VAR model can be used for policy analysis. Obviously, as there are also
non-structural elements involved, the Lucas critique (see Lucas, 1976) potentially
applies. A useful result to study the properties is that the posterior mean of the
VAR parameters can be decomposed into a ‘structural component’ and a ‘correction’
to match the data moments more closely. Depending on the tightness of the DSGE
prior, the correction receives more or less weight. The critical assumption making
policy analysis with the DSGE-VAR meaningful is that the correction is itself policy
invariant. That is, switching to a different policy specification does not influence
the way the original structural component should be corrected. This parallels the
idea that the main policy dependent mechanisms are build into the model, but there
are additional things going on in the economy which are relevant for the concrete

quantitative properties of the data, but not the policy question at hand.

3.2 Formal Description

A fundamental result used in Bayesian analysis is that the posterior distribution is
proportional to the likelihood function multiplied by the prior distribution. This is

referred to as Bayes’ theorem and can be stated formally as
p(©]X) o p(X|©)p(O)

where X represents observed data, © are the unknown parameters of any model un-
der consideration, and p(-) are generic density functions. In other words, given the
likelihood function and the prior distribution, the (unnormalized) posterior distribu-
tion is identified. Hence, in a first step we seek to define the former two ingredients.
As the mapping from the DSGE model parameters to the moments of the data is
highly non-linear, we are not able to analytically derive the posterior distribution of
the parameters. In a second step, we therefore describe a numerical method that
generates draws from the posterior distribution. Subsequently, we justify the use of
the marginal data densities as a measure of the posterior model probabilities and
describe the so-called ‘modified harmonic mean’ estimator that is used to calculate
the marginal data density. Finally, we formally describe the implementation of a

generic policy experiment in the DSGE-VAR framework.

Likelihood function: To derive the likelihood function, we have to define how

the data evolve given a particular set of parameters. We assume that the observable
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data vector X; follows a vector autoregressive process of order p:
(P(L)Xt = €t

where
OL)=1-P1L—...—P,L"

and e; is the vector of one step ahead forecast errors. The dimension of e; as well as
X; is N x 1. We assume that e; is normally distributed with mean zero. Formally,
this can be written as

et = Hy ager, &1~ iN(0,1)

The normality assumption is made in order to simplify the derivation of the pos-
terior density of the parameters. We will estimate the reduced form of this model:
Hy zr is not identified without imposing additional restrictions. Only ®(L) and
¥ = Hy arH{, 4 can be estimated. It follows that the likelihood function is

1
p(X | ®,%) o [27T 2 exp (—2tr(2_1(X’X — ' XpX — X'Xpd + (I)’X};Xﬂi))))

where

XX, .. X X',
X/ X ... X! X/

Xp= o Do : and X = r
Xpy Xb, .. X X,

Note that this likelihood function is conditional on the first p observations due to the
lag-structure of the VAR.

Prior distribution: The prior distribution is conveniently written in hierarchical
form:

p(z, P, 0) = p(z, (I)’H)p(e)

where we denote the vector containing the DSGE model parameters by 6. The
decomposition is useful because given 6, the prior for ¥ and ® has a standard form.
In order to describe this conditional prior distribution, we define a vector of variables
X;, t=1,...,7" as follows:

X; =275,
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The selection matrix Z is chosen such that the variables in the model correspond to
the observed data. X; has a VAR representation of infinite order. This system is

approximated by including only a finite number of lags:
P
XPm ) ®O);X] +ef
j=1

with ef ~ N (0,3*(0)). Now define implied coefficient matrices ®*(0) and ¥*(6) as
the maximum likelihood estimates (MLE) of ® and ¥ for a VAR(p) on an infinitely

large sample of artificial observations. They are given by the Yule-Walker equations:
*(6) = B(XpXp) " B(XFX"Y

S*0) = B(X*"X*) - E(Xp X*)E(XpX5) 'E(XH X"

where

*/ *! */ */
x5 Xr, X X
/ / / /
X Xr X3 X*
+1 e 2 +2
X5 = ’? 'p ‘ and X* = If
X XX X X
T*—1 “Tx—2 -+ ATxp T

The moments E(X* X*), E(X5X*) and E(X5X}) can easily be calculated given
the solution to the DSGE model (for details we refer to the appendix of DelNegro
and Schorfheide, 2004). Now, the prior distribution of ® and ¥ given 6 is chosen to
be of the following Inverted-Wishart-Normal form:

1§ ~ IW(S*(8), T* — Np — 1)
, —1
B[S,0 ~ N (@*(9), S® (T*E(X;;X}:,)) >

The distributions are centered at ®* and >*. One can immediately see that the prior
distribution for ® given ¥ gets tighter around the MLE of ® the larger the size of the
artificial sample is. To justify the ‘dummy observation’ interpretation of the DSGE
prior, it is illustrative to look more closely at the functional form of the density of a

random variable with an Inverted-Wishart-Normal distribution. In our case
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AT*+n+1
p(®, 2| 0) o [X]7 2

exp { — Ltr[S N (EB(XYX*) — ¥BE(X}H X*) — B(X* X3)® + ®'E(X" X*)®)]}

Comparing this density to the likelihood p(X | ®, %, 6), we see that it resembles the

(quasi-) likelihood function'® of dummy observations X*

*

. e
p(X™]0) oc B[ 2
eXp{ o %tT(E—I(X*’X* _ @IX;:X* - X*IX}kJI(I) + q)/X*’X*'(I)))}

multiplied with an (improper) prior

p(®, %) ="

The prior density of ® and X given 6 only differs because, in order to avoid stochastic
variation in the moments of the dummy observation, the simulated sample moments
are replaced with their expectations. That is, our prior is chosen as if we estimated
the parameters ® and > based on the sample of observed and simulated data using
only an improper prior. The sample size of the artificial sample is T* = \T', therefore
A is a parameter which reflects the ‘tightness’ of the DSGE model prior. The larger
A, the larger the sample compared to the actual sample. If A is large, the estimates
of ® and ¥ will concentrate on the restrictions implied by the DSGE model.

We have defined the prior density of ¥ and ® given 6 so far. The prior density p(6)
remains to be determined. This is done following the standard strategies used in the

literature on estimating DSGE models.

Posterior distribution: The posterior distribution can be factorized in the same

way as the prior distribution:

p(27 P, H‘X) = p(27 (I)|97 X)p(@‘X)

Because of the choice of a conjugate prior for the VAR parameters given 6, the

posterior of the same parameters given 6 is of the same form as the prior:

For two reasons, this can be the quasi likelihood function: First, the DSGE model does not necessarily
have a VAR(p) representation. Second, the likelihood function corresponds to normally distributed shocks,
which has not been assumed so far.
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$10,X ~ IW (S(@),(1+A)T—Np—1) (31)

O[%,0,X ~N (é(e), S ® (\TE(XEXE) + X};Xp)‘l) (32)

It is centered at the MLE on both actual and artificial data, ®(#) and ®(6). Usually,
the prior for 8 does not have a simple standard form. Moreover, the mapping from
0 to the moments of the artificial data is highly non-linear in most models. Hence,
the marginal posterior distribution for  will not have a standard form. To calculate

the distribution, one has to use numerical methods, as described in the next section.

MCMC algorithm: The estimation proceeds in two steps, following the decom-
position of the posterior distribution above. Step 1 is to produce J draws from
p(0]X). In Step 2, we draw from the posterior distribution of the VAR parameters

given the draws from Step 1.

Step 1: Drawing from p(f | X): The distribution depends on prior knowledge about
specific parameters in the model. Usually, there is no way to obtain a standard
posterior distribution for 6. A possible way to draw from a non-standard dis-
tribution is a Random Walk Metropolis-Hasting (MH) Algorithm. Given an

initial value g, a candidate 8* is drawn from a proposal distribution:

9* = Gj_l + Eprop

where a standard choice for the distribution of €y, is a multivariate t-distribution.

Then, the following ratio is calculated:

_ p(X [607)p(07)
p(X [ 07 1)p(0i—1)

The proposal #* is accepted, that is we set #7 = #*, with probability r =
min(1,7). If the #* is rejected, we set #7 = 671, These steps are repeated
for j = 1,...,J. For an exposition of MH algorithms and MH within Gibbs
algorithms see Geweke (2005). The key result is that the sequence of draws
forms a Markov Chain with unique stationary distribution p(f | X). In order
to mitigate the effects of 6y, which is chosen arbitrarily, we discard a certain
number of initial draws. A prerequisite for using the algorithm is that the

likelihood can be evaluated for a given 6. The relevant likelihood is
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DTk
2

R _N ad
|B(XX2) + XX, |(A + DTE(0)]

p(X | 0) o =
X3 X3 F TS (0) T

Step 2: Drawing from p(®,X¥ | 0,X): For j =1,...,J, we first draw X from the
inverse Wishart distribution (31) and then draw ® from the multivariate normal

distribution (32). In each case, § is replaced by 6; from the first step.

Posterior model probabilities: To choose the optimal tightness of the DSGE
prior, we will use a measure of in-sample fit. The measure is based on posterior model
probabilities for a grid of weights A1,..., A;. We index each model by its values for
the weight of the DSGE prior A; and denote the respective models by M,. We then
calculate the posterior probabilities of each model:

XM, )p(My,) P(X My, )p(My,)

Mo x) = 2 =
p(M]X) 2(X) Sh_y (X[ My, )p(My)

To compare the different models, we put equal prior weight for the each model:

M) =7, i

Hence, in relative terms, only the posterior marginal data density is used as a measure
of fit:

(X0, M))p(B|M))
p(OX, M,)

where © are all the unknown parameters of the model. The selection criterion me-

p(X|My) =L

chanically favors models with a high likelihood, but imposes a penalty on too loose
priors. The density p(X|M,) cannot be calculated analytically. However, the har-
monic mean estimator proposed by Geweke (1999) can readily be applied. This

estimator is based on the following identity:
1 f(©)
—— = | —————p(0]X)dO
705~ | sdiene o)
where [ f(©)d© = 1. This expression is estimated with
J
LIy O
p(X) 7= p(X]6;)p(8;)

In principle, any function f(©) which integrates to one can be used. A standard

choice is



£(8) = ¢~ (2m) "2 Ve |23 (070 (0=0) x [ (0 — ©)Vg (0 - ©) < Fl
O refers to the posterior mean and Vg is the posterior variance of the draws. The
parameter ¢ is deliberately chosen to dampen the effect of extreme draws out of the
posterior density. One word of caution may be necessary at this point: In theory,
the value of ¢ has no influence on the estimated value of the marginal data density.
In practice, the estimation depends to some extent on the value of ¢ due to the finite
number of draws. It is therefore recommended to calculate p(X) for various values

of q.

Identification of shocks: The residuals in the DSGE-VAR relate to structural
shocks ¢; as

et = Hy ares

with E(ee}) = Zps. We assume that Hy 4p is invertible, which means that there are
as many shocks as observed series. The goal is to estimate the reaction of the series
X} to the shocks &;:

0X
Hypr = g,t
t

0X+
Oe}

of Xy4p for h > 0. The problem of identification arises because Hy sr can not be

Given the responses on impact one can use ®(L) to calculate the responses

uniquely determined using only information from the reduced form estimation of the
DSGE-VAR. Hy 4R is only restricted by its relationship to the covariance matrix of

the reduced form residuals:

Y = HyarE(eie))Hy ap = Hy arHy op

It is always possible to plug an orthonormal matrix €2 into the above equation:

S = HyapQV H, 4z

and define H = Hy Ar€. This matrix also satisfies the restrictions implied by the
reduced form estimation. However, it implies potentially very different reactions of
X, to the shocks. Hence, given an arbitrary H, there have to be further restrictions
on {2 in order to determine the responses Hy 4z. The identification schemes used in

the literature differ in the way €2 is chosen. DelNegro and Schorfheide (2004) propose
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an approach which relies on the fact that in the DSGE model the shocks are exactly
identified. That is, the matrix

iiang = Hpscr(9)

is uniquely determined. Recall that H(#) can be calculated using standard methods
to solve linear(ized) DSGE models. Furthermore, there is a unique decomposition of
this matrix into the product of a triangular matrix Hy, pser(f) and an orthonormal

matrix 2(0):

H(0) = Hyr psae(0)Q(0)

The idea is to set H to Hy, v AR, the Cholesky decomposition'® of ¥, and then to use

Q(0) as a rotation:

Hy ar(0) = Hi v Ar0)

On impact, the responses differ to the extent that Hy. psgr(0) and Hy.yag differ.
That is, if the covariance matrix of residuals is similar to its counterpart in the DSGE
model, then the responses on impact will be close. For horizons bigger than zero,
there is the influence of ®(L) which allows for further deviations of the DSGE-VAR

responses from the DSGE model implications.

Policy experiments: The ultimate goal is to use the estimated model for policy
experiments. Usually, a subset of parameters in the DSGE model can be interpreted
as ‘policy parameters’ in the sense that some authority can choose their values. In
our case, these may be the parameters in the Taylor rule. Denote those parameters
by 6, and the non-policy parameters by 6,. We want to calculate what the effects of
changing 6, is, given the estimated marginal distribution of 6. The post-invervention

distribution of the DSGE model parameters is

pOY) = p(6s]Y,0p)p(0p) = p(6s]Y )p(6))

The second equality follows from the assumption that 65 are deep parameters, that is,

they are not influenced by the policy change. We then calculate the post intervention

5There is a subtlety here: The Cholesky decomposition as well as the LR decomposition above is only
unique up to the sign of each row. Intuitively, changing the sign of a shock and at the same time changing
the sign of the response does not alter the results. Hence, one has to confirm that the ‘same’ sign convention
is applied for both decompositions.
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distribution of our VAR model parameters:

(@, 5[Y) = / p(®, S|V, 6)5(6]Y)d

Concretely, we use the posterior draws of 8 and replace the policy parameters in this
distribution with the desired values. We then apply Step 2 of the MCMC algorithm
again for each draw of the adjusted distribution to draw from the post-intervention
distribution of ® and Y. The new VAR parameters can then be used to calculate
statistics of interest, such as the variability of output or inflation for example. In
this way, it is possible use the DSGE-VAR model to evaluate the effects of policy
changes. Note that the second step contains the ‘correction mechanism’: Instead
of using directly the VAR implications of the DSGE model for a particular set of
0, that is replacing ® and ¥ in the integral above with the functions ®*(f) and
¥*(0), we use the conditional posterior distribution of the DSGE-VAR parameters.
This conditional posterior distribution consists in part of this function, but it is
augmented with the correction mechanism which is not influenced by the DSGE

model parameters by assumption.
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4 Empirical Implementation

4.1 Data

Following Justiniano and Preston (2008), we use data on output, inflation, interest
rates, the terms of trade and the real exchange rate. A central issue are how data
on the ‘world’ economy is obtained. Approximately 90% of the Swiss imports and
almost 80% of all exports are to, respectively from the OECD countries. We therefore
approximate output and prices of the world economy with data from these countries.
For output we use real GDP of OECD countries available from the OECD.stat. In-
flation is measured by the first difference of the implicit GDP deflator. For interest
rates, we use the US short-term interest rate as this is presumably the most impor-
tant interest rate for the world economy. Swiss data is obtain from the Swiss National
Bank database and the Swiss State Secretariat for Economic Affairs (SECO). Out-
put is measured by real GDP taken from the SECO database. Again, we use first
differences of the implicit GDP deflator as a measure for inflation. The interest rate
is the 3-month Libor, converted to quarterly data by averaging over the monthly se-
ries. The terms of trade are constructed from the implicit price deflators for imports
and exports available from the SECO database. The real exchange rate is the index
constructed by Swiss National Bank. As our theoretical model does not explicitly
model a trend, we use output growth instead of output in levels. This would be
consistent with a linear trend in output. Following Justiniano and Preston (2008)
we also use first differences of the the terms of trade and the real exchange rate. The
mapping Z is chosen such that the first differences in the data are directly linked to
the first differences of the same variables in the model. We therefore augment the

state vector Sy with lagged values of output, exchange rates and the terms of trade.

4.2 Prior Distribution and Model Specification

The prior distribution for the DSGE model parameters 6 is obviously model depen-
dent. Our model has already been estimated by Justiniano and Preston (2008) using
Bayesian methods. We therefore closely follow their specification of the prior dis-
tribution. The differences are due to country specific implications of the data for
steady state values. We decided to use a higher discount factor for Switzerland than
the standard value of 0.99: j is calibrated to be 0.997 corresponding to an average
annualized real interest rate of 1.3%. The prior mean of the openness parameter o
is 0.43 according to the average of export and import shares (calculated as the sum

of exports and imports divided by twice the output, averaged over all time periods).
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We decided to estimate the parameters with a rather tight prior distribution.

With respect to the tightness of the DSGE prior, we estimate the model for a grid
of values, \ € {%, 0.8,1,1.5,2,3,5,10,100}. We estimate the model for lag lengths 1
up to 4. In addition, we estimate the model without accounting for misspecification.
Based on posterior model probabilities, we select one model out of these 37 estimated

models for the policy evaluation.

4.3 MCMC Algorithm

The distribution of the innovations of the proposal draw in the MH-algorithm is
a standard multivariate t-distribution with 40 degrees of freedom. To specify its
covariance matrix, we proceed as follows: We search for the posterior mode of the
DSGE model parameters using the standard likelihood function without adjusting
for misspecification. The scaled inverse Hessian at the mode is used as covariance
matrix. It is scaled in order to get an acceptance rate between 0.2 and 0.3. We
have drawn 50 different sets of initial values out of the prior distribution for 8 to
initialize the search for the mode. For all the sets, the algorithm converged to the
same posterior mode (up to a clearly numerical error). We therefore conclude that
posterior distribution is reasonably well behaved. We iterate 1’000°000 times over
Step 1 and 2 of the MCMC algorithm described in Section 3 for the grid of A defined
above.'6 As initial value for the MCMC algorithm, we also use the posterior mode
based on the likelihood function of the DSGE model. To mitigate the effect of
the initial values, we discard the first 20% of the draws. Convergence is checked
by graphically verifying that the recursive means remain stable after removing the
discarded draws. For computational reasons we evaluate only every 16th draw, such
that we are left with 50’000 draws to calculate the distribution of the parameters.
In order to select the optimal tightness of the prior, we calculate the harmonic mean
estimator of p(X|\) for ¢ = {0.05,0.1,0.25,0.5,0.75,0.9,0.95} for each A in the grid.
The results differ across ¢’s only to a small extent. Moreover, the ordering of the
model is robust to the choice of ¢. For the model with the highest marginal data
density, we additionally run a chain with 5°000’000 draws as well as 10 chains with
1’000°000 draws starting with initial values drawn out of the prior distribution to
check the dependence on initial values. The differences across chains with respect to
the posterior distribution of 6 are very small. Furthermore, combining these chains
resulted in virtually no difference to the posterior distribution obtained from the chain

with 5’000°000 draws. Therefore, when evaluating the model with the optimal A, we

16Tt is actually not necessary to do Step 2 if the aim is only to calculate the marginal data density.
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only report results based on the latter. Again, we discard the first 20% of the draws.
We calculate the statistics of interest using every 40th draw, such that we are left with
100’000 draws. For all the calculations, we use our own MATLAB programs, except
for the posterior mode search where we rely on Christopher Sims’ csminwel routines
available on http://sims.princeton.edu/yftp/optimize. Whenever possible, we
debugged our code by comparing its results to the Frank Schorfheide’s GAUSS code

available on http://www.econ.upenn.edu/~schorf/research.htm.
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5 Results

In this section we present the results from our empirical analysis. First, we elaborate
on the selection of the model which will be used for the subsequent analysis. Sec-
ond, we discuss its prominent properties. Third, we focus on the coefficients in the
Taylor rule for different specifications. Finally, we show the results from our policy

experiments.

5.1 Model Selection

As described in section 3, the posterior marginal data density can be used as a selec-
tion criterion for choosing the optimal tightness of the DSGE prior. Figure 1 shows
the marginal data densities for the estimations of DSGE-VAR models with lags 1 up
to 4 over a finite grid of the tightness parameter A. For our estimations the optimal
model choice results in p = 4 lags and A = 2.5. All subsequent analyses will be based
on this choice.

Before we proceed, it is worthwhile noting a number of interesting features that
emerge from this graphical representation. An outstanding characteristic is the in-
verse U-shape of the posterior marginal data densities as a function of the tightness
parameter ), irrespective of the number of lags included. The low data densities for
high values of A suggest that DSGE model induced restrictions are not supported by
the data. On the other extreme, the low data densities for a low A indicates that
prior information is beneficial because it helps to reduce the parameter space. In
sum, the qualitative shape of the data densities can be interpreted as evidence for
the usefulness of the DSGE-VAR approach to improve the fit of data. Another strik-
ing feature is the fact that optimal weight A\ varies with different lags. The reason for
this can be attributed to the dual nature of the data density as selection criterion.
On the one hand, in-sample fit is rewarded and on the other hand, model complexity
is penalized. For small values of A, the criterion favors a lower lag structure, meaning
that more complex models are penalized heavily when prior information is diffuse.
Finally, it is interesting to mention that the estimation of the “pure” DSGE model

yields a lower data density

5.2 Model Properties

Information about the DSGE parameter estimates for the model chosen in the pre-
vious section is contained in Table 2. The means and 80% highest posterior distribu-

tion intervals (HPDI8O0) are reported for the prior and posterior distributions for all
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parameters. The first conclusion is that the data contains information on the param-
eters, though not on all of them. This can be seen in that prior and posterior means
and HDPI80 do not coincide for most parameters. Turning to the estimates of some
selected parameters, it is striking that the inverse intertemporal elasticity of substi-
tution takes a very low value with the posterior mean being at 0.20. Furthermore,
we find that habit formation plays essentially no role and also inflation indexation
is not as prominent as claimed for instance by Christiano, Eichenbaum, and Evans
(2005) for closed economies. Previous studies like Adolfson, Laseen, Linde, and Vil-
lani (2007) or Justiniano and Preston (2008) have found the parameter for the trade
share a to be particularly difficult to identify, so it was calibrated. We find that
although it is updated slightly towards zero compared to the prior, estimation yields
a reasonable result with the posterior mean lying at 0.37. The parameters for price
stickiness in the domestic and the import sector both take rather high values. The
results suggest that prices in the import sector adjust more sluggishly than in the
domestic sector. The implied price durations based on the posterior means are 3.1
and 2.4 quarters, respectively.

We do not report the implied VAR coefficients because of their excessive dimension.!”
Instead, we perform impulse-response analysis based on the identification described
in section 3 to evaluate the dynamic properties of the model. Figure 2 shows the
responses of the domestic output growth, inflation, interest rates as well as the terms
of trade and the real exchange rate to a contractionary monetary policy shock. Con-
sider first the impulse response functions of the purely estimated DSGE model which
are plotted in red. Contractionary monetary policy appreciates domestic currency
and lowers inflation and output. Because prices are sticky, the nominal appreciation
entails a drop in the real exchange rate. The terms of trade go up at impact. This
result is not evident a priori and can be explained by looking at equation (21). The
change in the terms of trade is the difference of import and domestic price inflation.
Depending on which one reacts more strongly to the monetary policy shock, the
terms of trade can move in either direction. In our case, we have found the Calvo
price stickiness parameter in the import sector to be higher than in the domestic
sector. This implies a more gentle reaction of import price inflation to the monetary
intervention resulting in the increase in the terms of trade. Turning to the compari-
son of the impulse responses of the plain model to those of the DSGE-VAR, we find

that the broad picture is confirmed. However, there are certain discrepancies, e.g. the

1"Note that we have estimates for 4 coefficient matrices and the covariance matrix. Each of them is of
dimension (8 x 8). Even when accounting for the symmetric structure of the covariance matrix this would
amount to reporting information on 292 VAR parameters.
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reaction of the terms of trade are nearly zero. This can once again be interpreted as
evidence that the DSGE-VAR approach is taking the misspecification of the DSGE

model into account and matches the data more closely.

5.3 The Taylor Rule

The main question we want to address in this paper is whether the monetary authority
should take movements in the nominal exchange rate into account when conducting
monetary policy. The estimates of the coefficients in the policy rule are thus of
special interest. They are already reported in Table 2. We additionally plot the
prior and posterior densities in Figure 4. To begin with, it stands out that the
data seems to contain information on all parameters except the coefficient on output.
Interest rate smoothing seems to be an important objective in Swiss monetary policy.
The coefficient on the lagged interest rate is updated distinctively towards one and
achieves a mean value of 0.88. The coefficients on inflation and output are in the
order of magnitude which is in line with the literature.

We now turn to the parameter which is in the center of our focus: the coefficient on
the change in the nominal exchange rate ¥a.. Although the posterior distribution
is pulled towards zero compared to the rather diffuse prior, a lot of its mass is
clearly centered around a non-zero value. The posterior mean take a value of 0.12.
A justified critique can be pointed at the fact that zero has only been included
as boundary in the prior, therefore inherently favoring a non-zero support for the
posterior distribution. To dispel this scepticism, we re-estimate a DSGE-VAR for
the same specifications but restrict the exchange rate coefficient to be zero. Table
3 contains the log marginal data densities as well as the posterior odds ratios for
different truncation values ¢q. The posterior odds ratio can be taken as a criterion in
favor or against the hypothesis YA, = 0 versus ¥a. > 0. The results clearly support

a non-zero exchange rate response of Swiss policy.

5.4 Policy Experiments

In the previous section we have already presented evidence that favors the inclusion
of the nominal exchange rate into the policy rule over the standard specification a la
Taylor. In this section we present further findings that support this conclusion. The
results of the policy experiments described in section 3 are summarized in Figures 5
and 6. It is assumed that the monetary authority sets the policy parameters but does

not influence the others. In this exercise, we let YA, vary over a grid and re-draw the
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DSGE-VAR parameters from the post-intervention distribution. For each of the new
post-intervention estimates, we simulate the model and evaluate the macroeconomic
performance on the basis of both the variability of inflation and the variability of
output. In both graphs, the blue line represents the distribution of inflation and
output volatility, respectively, for the estimated benchmark model. The red line
shows the post-intervention distributions. The central finding is that no reaction
to the nominal exchange rate deteriorates macroeconomic performance - albeit only
slightly - both in terms of inflation and output volatility. A small positive value for
the coefficient around 0.1 seems to be optimal. As the coefficient grows too large,
macroeconomic performance worsens. Note that the HPDISO of ¢a. corresponds
closely to the region with the lowest volatilities of output and inflation. That is, the
Swiss National Bank did react optimally to the exchange rate movements in that

respect.
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6 Conclusion

The main contribution of this paper is to assess the question of optimal monetary
policy in the open economy. Specifically, we ask whether it is optimal for the cen-
tral bank to react to movements in the nominal exchange rate when macroeconomic
performance is evaluated by means of inflation and output variability. We estimate
a structural model that is suitable for addressing this question for Swiss data. In ad-
dition to only estimating the model, we use the approach proposed by DelNegro and
Schortheide (2004) to account for possible misspecification of the underlying model.
Under some assumptions, this approach allows us to perform some counterfactual
policy experiments in which the central bank influences the policy parameters.

The key findings of this study is that the estimated coefficient on the exchange rate
reaction in the policy rule is non-zero. Moreover, the posterior odds ratio between the
basic version of the model and one in which the exchange rate coefficient is restricted
to be zero clearly favors the the former. Our policy experiments point towards the
same direction. Macroeconomic performance, measured both by the variability of
inflation and output, deteriorates for a zero coefficient. The exercises suggests that
a small, but positive reaction coefficient is optimal for the Swiss monetary policy
conduct.

We conclude by pointing out some issues that are left open for future research. The
robustness of our findings can be assessed along various aspects. The restrictions
imposed by the DSGE model may be more questionable for the foreign model econ-
omy. Therefore, one could alternatively specify a non-structural prior for the foreign
block. Another topic that potentially adds further insight could be a different spec-
ification of the Taylor-type rule. Specifically, a measure of output gap rather than
output could be included which would require the solution of the model for the flex-
ible price equilibrium. Furthermore, we could use alternative data: Prices could be
measured by the Consumer Price Index instead of the GDP deflator and the for-
eign block could be constructed using trade-weighted averages, for example. Finally,
our findings could be assessed in the light of a different model such as the standard

cash-in-advance model.
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A Tables and Graphs

Table 1: Prior distribution for DSGE model parameters

parameter distribution® mean standard deviation

I} calibrated 0.977
X calibrated 0.01
« Normal 0.43 0.05
o Gamma 1.20 0.40
® Gamma 1.50 0.75
Oy Beta 0.50 0.10
OF Beta 0.50 0.10
n Gamma 1.50 0.75
h Beta 0.50 0.25
Om Beta 0.50 0.25
oF Beta 0.50 0.25
Di Beta 0.50 0.25
U Gamma 1.50 0.30
Py Gamma 0.25 0.13
Yae Gamma 0.25 0.13
YAy Gamma 0.25 0.13
G* calibrated 0.99
c* Gamma 1.20 0.40
* Gamma 1.50 0.75
0* Beta 0.50 0.10
h* Beta 0.50 0.25
o* Beta 0.50 0.25
o; Beta 0.50 0.25
x Gamma 1.50 0.30
Y Gamma 0.25 0.13
YAy Gamma 0.25 0.13
Pa Beta 0.50 0.20
Pg Beta 0.50 0.20
Pep Beta 0.50 0.20
Prp Beta 0.50 0.20
P Beta 0.50 0.20
Py Beta 0.50 0.20
Om Inv Gamma, 0.38 0.20
g Inv Gamma  0.38 0.20
oy Inv Gamma  0.38 0.20
Ocp Inv Gamma  0.38 0.20
Orp Inv Gamma  0.38 0.20
oy, Inv Gamma  0.38 0.20
o Inv Gamma  0.38 0.20
o, Inv Gamma  0.38 0.20

?Note: The density function of the InverQSe G;amma distribution
is of the following form p(x) oc 27¥~1e~"*/2*" In our specifica-

tion, we use s = 0.3 and v = 4.
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Table 2: 80% highest prior and posterior density intervals of DSGE model parameters

Prior Posterior

Mean 80% Interval ‘ Mean 80% Interval

« 0.43 [0.37,0.50] | 037 [0.31,0.43]
o 1.2 [0.65,1.63] | 0.20 [0.13,0.27 ]
% 1.5 [0.47,220] | 1.13 [0.30, 1.67 |
Oy 0.5 [0.37,0.63] | 0.58 [0.48,0.70 ]
Or 0.5 [0.37,0.63] | 0.68 [0.62,0.75]
" 1.5 [047 ,220] | 1.26 [0.64,1.74 ]
h 0.5 [0.15,0.84] | 0.08 [0.00,0.12 ]
oy 0.5 [0.15,0.84] | 0.17 [0.00, 0.26 ]
op 0.5 [0.15,0.84] | 0.13 [0.00,0.19 ]
Di 0.5 [0.15,0.84] | 0.88 [0.80, 1.00 ]
(- 1.5 [1.09,1.85] | 147 [1.11,1.78]
Py 0.25 [0.07,0.37]| 011 [0.04,0.16 |
Yae | 025 [0.07,037]| 0.16 [0.08,0.22]
tay | 025 [0.07,037]| 042 [0.27,0.55 ]
o* 1.2 [0.65,1.63] | 0.73 [0.38,0.97 ]
p* 1.5 [0.47,220] | 1.51 [0.47,2.23]
0* 0.5 [0.37,0.63] | 0.50 [0.37,0.62]
h* 0.5 [0.20,0.88] | 0.13 [0.01,0.21 ]
o* 0.5 [0.20,0.88] | 0.25 [0.00, 0.40 ]
p; 0.5 [0.20,0.88] | 0.78 [0.71,0.87 ]
- 1.5 [1.09,1.85] | 1.77 [1.40, 2.11 ]
Y 0.25 [0.07,0.37]| 008 [0.02,0.12]
w*Ay 0.25 [0.07,037]| 042 [0.18,0.61]
Pa 0.50 [0.23,0.77] | 0.31 [0.08,0.48 |
Py 0.50 [0.23,077]| 079 [0.72,0.88]
Ds 0.50 [0.23,0.77]| 0.71 [0.61,0.83]
Pep 0.5 [0.23,0.77] | 037 [0.13,0.54 ]
o 0.5 [0.23,0.77] | 0.81 [0.69,0.98 ]
Pg 0.5 [0.23,0.77] | 0.78 [0.71,0.87 ]
o; 038 [0.17,048]| 0.26 [0.20,0.32]
Oq 0.38 [0.17,0.48] | 049 [0.25,0.63 ]
oy 038 [0.17,048]| 033 [0.21,0.41]
Os 0.38 [0.17,0.48] | 0.19 [0.14,0.22]
Oep 0.38 [0.17,0.48] | 021 [0.18,0.24 |
or 0.38 [0.17,048]| 045 [0.19,0.61 ]
lop 0.38 [0.17,048] | 021 [0.15,0.24 ]
oy 038 [0.17,048]| 048 [0.22,0.64 ]
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p(Y [ A)

Table 3: Posterior odds

Log marginal data densities

Posterior odds®

q wAe >0 wAe =0
0.05 184.14 168.16 0.11 x1076
0.10  184.30 166.09 0.01 x107°
0.25 184.44 166.98 0.03 x1076
0.50  184.09 167.62 0.07 x1076
0.75  184.23 167.92 0.08 x1076
0.90  184.26 168.09 0.10 x1076
0.95 184.28 168.14 0.10 x1076

®Note: Posterior odds of the hypothesis ¥a. = 0 vs. ¥a > 0.
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Figure 1: Posterior marginal data densities over a grid for A
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Figure 2: Impulse responses to a contractionary domestic monetary policy shock
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B Derivations of the Model Equations

B.1 The Domestic Household

The household problem is solved in two stages. In a first step, we solve for the
combination of domestic and foreign goods bundles that minimize costs for any given
level of aggregate consumption. Then, given the costs for any level of consumption,
the household chooses C; and N; so as to maximize lifetime utility.

The cost minimization problem is given by

oy
min PHJCHﬁ + PF,tCF,t s.t. Ot = |:(1 — Oé)%CHt + anC 75 :| ! (B-l)

Cu,t,Cr

n=1 1 n=1
n

Attaching the multiplier P; to the constraint in (B-1) and maximizing with respect

to Ch, and Oy yields the demand functions

P, -1 P, -
CHJ = (1 — Oé) <‘g;t> Ct CF7t =« < _;;t> (B—Q)

When plugging the demand function back into the CES-aggregator we find the the-

oretically correct consumer price index
1
Pr=|(1-a)Py " +aPy,"| " (B-3)

Optimality also requires that the expenditures on all varieties are cost minimizing
for any level of the respective consumption bundles. Since we have introduced Calvo-
pricing with indexation, the cost minimization complicates a little bit compared to the
standard problem. Let P}Lt(i) and C}Lt(i) denote the price and quantity demanded
of variety 4 from a firm that can re-optimize its price in period ¢ and PIQ{,t(i) and
C%7t(i) the price and quantity demanded from a firm that cannot re-optimize its
price. Then the cost minimization problem of the household for the varieties of
domestically produced goods is given by

O

1
min PL . (i)C!} idi+/ P?.(i)C% (i B-4
o 0% o o i(1)Cy () . i.6(1)Crr(7) (B-4)

subject to the following Dixit-Stiglitz aggregator
GH e—1

1 e
Cip = [ Cly (i) di + / c},’t(i)ildi] (B-5)
0 0n
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Attaching the multiplier P to constraint (B-5) and differentiating the Lagrangian
with respect to C}Lt(i) and C%yt(i), the following variety demand functions can be

derived

1 . —€
C}{,t(i) = <PHt(Z)) Chy (B-6)

C%I,t(i) = <PHt

Re-inserting (B-6) and (B-7) into (B-5) yields the theoretically correct price index

CHy (B-7)

for the domestic consumption bundle

1
1—¢

1
P (i)' di + / Pgt(z‘)l—fdz} (B-8)
O

O

Py = [

0
Since we also impose Calvo-pricing on the retailers that import foreign varieties, we
obtain demand functions and a price index for imported goods that are analogous to
(B-6), (B-7) and (B-8). What is left to be shown is what prices Pllﬂ(i) and P}QLt(i)

are.

B.2 Pricing Decision of the Domestic Firm

Domestic firms face a Calvo-style staggered price setting problem with indexation.
That is, with probability 0 firms cannot re-optimize their price and just follow the
indexation rule given by (10). Despite of ex ante heterogeneity of firms we only
consider the symmetric equilibrium in which all firms react identically and set the

same price. That is, firms that cannot re-optimize set

1

P11\

Pha=Pui (- (B9
Ht—2

and firms that can re-optimize all set the same optimal price which we denote by

Pfl,t = P}Lt. In that case, the domestic goods price index (B-8) becomes

1
1—¢

p St 1—¢
Py = |0 (PH,t—l ( H’t_1> ) + (1 —0g) P;{,tl_g (B-10)

Py o

The staggered price setting renders the maximization problem of the firms dynamic.

We must find an expression for the demand faced by a firm for any period ¢t 4+ 7

20



when it has last set its price optimally in period ¢. Any firm sells its output both
domestically and abroad. The relevant domestic demand curve for this case is given
by (B-6). When assuming that the demand from abroad resembles the domestic
demand in a way described by equation (17), the total demand faced by a firm in
period ¢t + 7 that has last re-set its price optimally in period ¢ is given by

P! o
H -+t
C(H,tJr‘r|t = <T> (CH,H-T + CI*{,tJrT)

PH,tJrT
Applying the indexation rule (B-9) we can replace P}L 44+ and obtain
Phy [ Pupr1\"\ X
CHiqrt = : ( — ) (CHypyr +Clr4r) (B-11)
Pritr \ Pui—1

A firm that can re-set its price in period t chooses P;ﬂ such that it maximizes the
present discounted value of profits taking into account the probability of not being

able to re-set prices in the future:

PH T— o
P, (”1) — Py s MCyyr

o
max E 07 - i
; ¢ Y 05 QutrYorfe () Pras

Ht =0

subject to (B-11). The first order condition of the maximization problem can be

written as
- Pyiir1 o € !
B O0uQuiieYesre(i) | Phry <PHt1> = o7 P MCiyr| =0 (B-12)
=0 "

The derivation of the optimal price setting condition for the retailers is analogous to

the one of the domestic firms.

B.3 Log-Linearizing the Equilibrium Conditions

Euler equation: the log-linearization of (6) is straightforward.

Resource constraint: to linearize (16) we need some preliminary steps. Linearizing
the CPI (4) around a zero inflation steady state in which P = Py = Pr yields

pe = (1 —a)pus + apry (B-13)
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The linearized terms of trade are s; = pr; — py, and the law of one price gap is

Vi = et + p; — prye. First differences of the terms of trade imply
ASt =TFt —THt (B—14)

From the definition of the real exchange rate we can infer that it depends on the law

of one price gap and the terms of trade according to
@G =et+p; —pt =Y+ (1—a)s; (B-15)

From (B-13) and (B-14) we find that p; — pr+ = as¢, so that domestic CPI inflation

and domestic goods price inflation are related according to
T = THt + aAs; (B-16)

We now go about linearizing the resource constraint (16). In contrast to the domestic
economy, we assume that the the law of one price holds for imports of domestic goods
to the foreign economy, i.e. Py ; = €;Pr;, = €;P;. Therefore, the resource constraint

Y; = Cpuy + CF, can be written as

P K *
Y, = (1—a) < H’t> Ct +(WpsS)T Y

Py

The parameter ¢ represents the steady state ratio of exports to GDP in the foreign
economy. Although due to the large open economy assumption it tends to zero, we
still need it for technical reasons, specifically to have a well defined steady state level
of Cf;. Taking a log-linear approximation to the above equation around the zero

inflation steady state yields in a first step

Yy = Culn(pe — puae) + i) + Chln®™ (Ve + s¢) + vy

From the steady state version of equation (3) we find that Cy = (1 — a)C and
Cr = aC where CF is the steady state level of exports. Assuming balanced trade in
the steady state we get C}, = Cr = aC'. Plugging this into the resource constraint
we get Y = (1 — a)C + aC = C. By dividing both sides of the above equation by Y’
and using equation (B-16) we find

y=(1—a)a+al(l —a)n+ Nsi + a \pp + oy
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When further assuming that the elasticities of substitution across goods coincide in

both economies, i.e. n = n*, we get the linearized resource constraint
yr = (1 — a)ey + an(2 — a) sy + anpy + oy (B-17)

Optimal price setting for domestic firms: taking a log-linear approximation to
(13) and (11) yields a hybrid Phillips curve. Let IIy; denote the gross inflation of
domestic goods between ¢t — 1 and ¢ and Ilf 4~ the one between t and ¢ 4+ 7. As
a preliminary step, we divide both sides of the domestic price index (11) by Pr;—1

and rearrange to obtain

P, l—e
oo () oun
’ Pt :
So in a zero inflation steady state in which IT = Iy = 1 it must be that P;; = Py

and therefore the steady state real marginal cost are MC = £=1. We proceed by

g
dividing the firms’ optimality condition (13) by Py ;1 (which is in the information
set of t) and using the above definition we obtain
/

Pt on I
Py, Hit-Lttm-17 27

i

o0
N
E; Z O Qtt+-Ch pyrit

=0

Ogi1t4-MCiir| =0

From (12) we can see that in a zero-inflation steady state yg (i) is well defined and
independent of time. Moreover, the steady state stochastic discount factor is just
Qt,t++7 = B7. Hence, first order Taylor expansion to the above condition around the

steady state yields
o0

0=FE Y (0uB)" [Pus — pri—1 + 08 (D71 — PHe—1) — (MCir + PH 7 — PHi-1)]
=0

By rearranging we can express the gap between the optimal and last period’s price as
the sum of expected future marginal costs and a weighted average of domestic goods

price inflation and general CPI inflation

o T
Prs —pri—1 = (1 — 0 p)E; Z(QH@T meiyr +0umH s + (1 —6m) Z TH t+k
7=0 k=0
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After some tedious manipulations the above expression can be written as

[e.9]

Py —Pri-1 =B Y _(0uB)7 (1= 0gB)merir + (1 — 650uB)mr 4]
7=0

or as a first order difference equation

Py — -1 = (1= 0aB)mes + (1 = duOuB)mu s + (OuB) By i1 — Ph.]

By taking a log-linear approximation to the domestic goods price index (11) we find
that

pre = (1= 0m)py, + 0u((1 + 0u)pHi—1 — OupH1—2)

Subtracting pg;—1 from both sides and rearranging yields

T UHOH
1-0y 1-060g

/
Pt —PHt-1 = THt—1

When inserting this into the above difference equation and collecting terms we get
the hybrid Phillips curve

(1—=0u)(1—0up)
O

THt — OHTH -1 = mee + BE T 41 — OHTH 4] (B-18)

Marginal costs: To find an expression for the real marginal costs in terms of the
other variables we assume that the labor market is in equilibrium and plug the
households optimal labor condition into the expression for marginal costs. A log-

linear approximation is then
me; = ong + pr — prt — Ear + (1 —h) " (er — her1)

Substituting for n; from the production function and using equation (B-16) real

marginal cost are given by
mey = @y — (1 4+ p)eqr +asy +o(1 — R) " Ye; — herq) (B-19)

Optimal price setting for domestic retailers: Again, we can proceed exactly
analogous as when linearizing the optimal price setting condition for domestic firms.
Because of zero-inflation in the steady state it must be that the steady state law

of one price gap is ¥p = (¢ — 1)/e. A log-linear approximation to the optimality
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condition (15) then yields the difference equation

Pri —pri—1 = (1= 0pB8)r: + (1 — 0p0pf)mr: + 0rBE[Prs 1 — Pri]

From the log-linear approximation to the import price index one can derive

et Opdp
1—-60p 1-—0p

/
Prt — PFt—1 = TRt

Combining the last two equations then yields a hybrid Phillips Curve for import price

inflation of the form

1—0p)(1—-06
Tt — OFpTR—1 = ( FL(F ) VYpi+ BETE 41 — OpTE] (B-20)

Uncovered interest rate parity: When assuming that the function governing the
risk-premium is of the form ¢r1 = exp(—xA; — €5,), the log-linearization of (7) is
straightforward and directly yields (25).

Budget constraint: Recall that the domestic bond market clearing requires Dy =
0 Vt. Moreover, we assume that the government transfers 7; are chosen exactly so
as to neutralize the distortions stemming from monopolistic competition. It proves
convenient to introduce the profits from the final goods producing firm (this does
not change anything because it is perfectly competitive and thus makes zero profit):

Ity = BCy— PriCri — P tChy. Settling profits with the lump sum transfer yields
Hpge +Hpy + Upy + Ty = PC — WiNy + €.Pfy . Crpy — 6P Cry
Plugging this into the budget constraint yields
€tBy = é:By1(1 +i;_1)bt + & Pp ;Chyy — €1 P Cry

Since domestic goods are sold at the law of one price abroad we have Pp; =
étPjEI’t. When dividing the whole equation by F;Y, making use of the definition
A = éBi/(PY) as well as the demand functions (3) and (17), and applying the

definition of the real exchange rate we obtain

g (1+1q) 1 Py o Pp\ "
A=A, BTy L 2 A AL ) o
¢ 1z s ot + 7 2 S(WpS)T Y] — G 2l t

where II} is the gross foreign inflation rate. Since net-foreign debt can take on

negative values, we will linearize it (instead of log-linearizing). All other variables
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are log-linearized and the conventional notation introduced above is used. Combining
the Euler equation and uncovered interest parity condition in the steady state yields
1/8 = (1 —4*)/II*. Because we further assume that net-foreign debt in the steady
state is zero, all log-linearized variables of the first term of the right-hand-side in
the above equation drop out. We can therefore concentrate on the log-linearization
of the second term. The real interest rate in the steady state is equal to unity.
Imposing balanced trade we have found in the derivation of the resource constraint
that C;; = ¢Y* = aC = aY. The log-linear form of the budget constraint can

therefore be written as

ar = %at—l + o (pH,t —pt+ n(wp,t +s)+y — @+ n(pEt —pt) — ¢t)

Note that we imposed 1* = 7. From the resource constraint we know that

Y — G

Yy —c = —n(2—a)st — MPry

In addition, since p; = (1 — a)pg+ + appy we can write pg; — pr = —as; and
prt —pt = (1 — a)sq. Recalling that the real exchange rate can be expressed as

¢t = Yrt + (1 — a)sg, we can substitute this into the budget constraint and obtain

Y — ¢t

ay = %atfl + « ( +nsy —Ype — s+l —a)sg —n(2 — Q)St)

Collecting terms and rearranging yields the log-linearized budget constraint (26).
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